Home
Class 12
MATHS
The value of the integral int(-2)^2 sin^...

The value of the integral `int_(-2)^2 sin^2x/(-2[x/pi]+1/2)dx` (where [x] denotes the greatest integer less then or equal to x) is

A

4

B

`4-sin4`

C

`sin4`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-2}^{2} \frac{\sin^2 x}{-2\left[\frac{x}{\pi}\right] + \frac{1}{2}} \, dx \] where \([\cdot]\) denotes the greatest integer function, we will break down the integral into segments where the greatest integer function \(\left[\frac{x}{\pi}\right]\) remains constant. ### Step 1: Identify the intervals The greatest integer function \(\left[\frac{x}{\pi}\right]\) changes at integer multiples of \(\pi\). For the limits \(-2\) to \(2\): - For \(x \in [-2, -\pi) \approx [-2, -3.14)\), \(\left[\frac{x}{\pi}\right] = -1\) - For \(x \in [-\pi, 0)\), \(\left[\frac{x}{\pi}\right] = -1\) - For \(x \in [0, \pi)\), \(\left[\frac{x}{\pi}\right] = 0\) - For \(x \in [\pi, 2)\), \(\left[\frac{x}{\pi}\right] = 1\) Since \(\pi \approx 3.14\), we can simplify our intervals as follows: - \([-2, 0)\) - \([0, 2)\) ### Step 2: Break the integral Now we can break the integral into two parts: \[ I = \int_{-2}^{0} \frac{\sin^2 x}{-2(-1) + \frac{1}{2}} \, dx + \int_{0}^{2} \frac{\sin^2 x}{-2(0) + \frac{1}{2}} \, dx \] ### Step 3: Simplify the integrals Calculating the denominators: 1. For \(x \in [-2, 0)\): \[ -2(-1) + \frac{1}{2} = 2 + \frac{1}{2} = \frac{5}{2} \] Thus, the first integral becomes: \[ \int_{-2}^{0} \frac{\sin^2 x}{\frac{5}{2}} \, dx = \frac{2}{5} \int_{-2}^{0} \sin^2 x \, dx \] 2. For \(x \in [0, 2)\): \[ -2(0) + \frac{1}{2} = \frac{1}{2} \] Thus, the second integral becomes: \[ \int_{0}^{2} \frac{\sin^2 x}{\frac{1}{2}} \, dx = 2 \int_{0}^{2} \sin^2 x \, dx \] ### Step 4: Combine the integrals Now we can express \(I\) as: \[ I = \frac{2}{5} \int_{-2}^{0} \sin^2 x \, dx + 2 \int_{0}^{2} \sin^2 x \, dx \] ### Step 5: Evaluate the integrals Using the identity \(\sin^2 x = \frac{1 - \cos(2x)}{2}\): \[ \int \sin^2 x \, dx = \frac{x}{2} - \frac{\sin(2x)}{4} + C \] Calculating the integrals: 1. For \(\int_{-2}^{0} \sin^2 x \, dx\): \[ = \left[ \frac{x}{2} - \frac{\sin(2x)}{4} \right]_{-2}^{0} = \left(0 - 0\right) - \left(-1 - \frac{\sin(-4)}{4}\right) = 1 + \frac{\sin(4)}{4} \] 2. For \(\int_{0}^{2} \sin^2 x \, dx\): \[ = \left[ \frac{x}{2} - \frac{\sin(2x)}{4} \right]_{0}^{2} = \left(1 - \frac{\sin(4)}{4}\right) - \left(0 - 0\right) = 1 - \frac{\sin(4)}{4} \] ### Step 6: Substitute back into \(I\) Now substituting back: \[ I = \frac{2}{5} \left(1 + \frac{\sin(4)}{4}\right) + 2 \left(1 - \frac{\sin(4)}{4}\right) \] ### Step 7: Simplify \[ = \frac{2}{5} + \frac{\sin(4)}{10} + 2 - \frac{\sin(4)}{2} \] Combine terms: \[ = \frac{2}{5} + 2 - \frac{5\sin(4)}{10} \] \[ = \frac{2 + 10 - 5\sin(4)}{5} = \frac{12 - 5\sin(4)}{5} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{12 - 5\sin(4)}{5} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 7|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(0.9) [x-2[x]] dx , where [.] denotes the greatest integer function, is

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

The value of int_(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] denotes greatest integer function , is

int_(-2)^(2) min(x-[x],-x-[x])dx equals, where [x] represents greates integer less than or equal to x.

The value of int_(-pi//2)^(pi//2)dx/([x]+[sinx]+4) where [t] denotes the greatest integer less or equal to t, is

The domain of the function f(x) = sqrt((4-x^(2))/([x]+2)) where [x] denotes the greatest integer less than or equal to x,is

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

The value of the integral int_0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to