Home
Class 12
MATHS
The integral int(1)^(e){(x/e)^(2x)-(e/x)...

The integral `int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx` is equal to

A

`1/2-e-1/e^2`

B

`3/2-1/e-1/(2e^2)`

C

`-1/2+1/e-1/(2e^2)`

D

`3/2-e-1/(2e^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{1}^{e} \left( \left( \frac{x}{e} \right)^{2x} - \left( \frac{e}{x} \right)^{x} \right) \log_e x \, dx, \] we will use substitution and properties of logarithms. ### Step 1: Substitution Let's make the substitution \[ t = \frac{x}{e^x}. \] Then we can express \( \left( \frac{x}{e} \right)^{2x} \) and \( \left( \frac{e}{x} \right)^{x} \) in terms of \( t \): \[ \left( \frac{x}{e} \right)^{2x} = t^2, \] \[ \left( \frac{e}{x} \right)^{x} = \frac{1}{t}. \] ### Step 2: Change of Limits Next, we need to change the limits of integration. When \( x = 1 \): \[ t = \frac{1}{e^1} = \frac{1}{e}. \] When \( x = e \): \[ t = \frac{e}{e^e} = \frac{1}{e^{e-1}}. \] So the new limits for \( t \) will be from \( \frac{1}{e} \) to \( 1 \). ### Step 3: Differentiate Now we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = \frac{d}{dx} \left( \frac{x}{e^x} \right) = \frac{e^x - x e^x}{e^{2x}} = \frac{(1-x)e^x}{e^{2x}} = \frac{1-x}{e^x}. \] Thus, \[ dx = \frac{e^x}{1-x} dt. \] ### Step 4: Substitute Back into the Integral Now we substitute everything back into the integral: \[ I = \int_{\frac{1}{e}}^{1} \left( t^2 - \frac{1}{t} \right) \log_e \left( e^x \cdot t \right) \frac{e^x}{1-x} dt. \] ### Step 5: Simplify the Integral Using the properties of logarithms, we can simplify: \[ \log_e (e^x \cdot t) = x + \log_e t. \] Now we can express \( x \) in terms of \( t \): \[ x = e^{-1} \cdot t. \] ### Step 6: Evaluate the Integral Now we can evaluate the integral using the new limits and expressions. After performing the integration, we can combine the results and evaluate at the limits. ### Final Result After evaluating the integral, we find: \[ I = \frac{3}{2} - \frac{1}{e} - \frac{1}{e^2}. \] ### Conclusion Thus, the value of the integral is: \[ \frac{3}{2} - e - e^2. \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 7|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

int cos (log_e x)dx is equal to

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

int_(0)^(1)e^(2x)e^(e^(x) dx =)

The integral I=int_(e)^(e+1)(1+x^(2))/(1+x^(3))dx satisfies

int{((x)/(e))^(x)+((e)/(x))^(x)}log_(e)^(x)dx=

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The integral int(1+x-1/x)e^(x+1/x)dx is equal to

int(dx)/(e^x+e^(-x)) is equal to