Home
Class 12
MATHS
lim(ntoinfty) (n/(n^2+1^2)+n/(n^2+2^2)+n...

`lim_(ntoinfty) (n/(n^2+1^2)+n/(n^2+2^2)+n/(n^2+3^2)+...+n/5n^2)` is equal to

A

`pi/4`

B

`tan^(-1)(2)`

C

`tan^(-1)(3)`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \frac{n}{n^2 + 3^2} + \ldots + \frac{n}{n^2 + (5n)^2} \right), \] we can break it down step by step. ### Step 1: Rewrite the expression The limit can be rewritten as: \[ \lim_{n \to \infty} \sum_{r=1}^{5} \frac{n}{n^2 + r^2}. \] ### Step 2: Simplify each term Each term in the summation can be simplified: \[ \frac{n}{n^2 + r^2} = \frac{n}{n^2(1 + \frac{r^2}{n^2})} = \frac{1}{n(1 + \frac{r^2}{n^2})}. \] ### Step 3: Factor out \(n\) Now, we can factor out \(n\) from the limit: \[ \lim_{n \to \infty} \sum_{r=1}^{5} \frac{1}{n(1 + \frac{r^2}{n^2})}. \] ### Step 4: Change the summation to an integral As \(n\) approaches infinity, \(\frac{1}{n}\) can be treated as \(dx\) in the integral form. The term \(\frac{r}{n}\) approaches \(x\) as \(n\) becomes very large. Thus, we can express the summation as an integral: \[ \lim_{n \to \infty} \sum_{r=1}^{5} \frac{1}{1 + \left(\frac{r}{n}\right)^2} \cdot \frac{1}{n} \approx \int_{0}^{5} \frac{1}{1 + x^2} \, dx. \] ### Step 5: Evaluate the integral The integral \[ \int \frac{1}{1 + x^2} \, dx = \tan^{-1}(x). \] Thus, we evaluate: \[ \int_{0}^{5} \frac{1}{1 + x^2} \, dx = \tan^{-1}(5) - \tan^{-1}(0) = \tan^{-1}(5) - 0 = \tan^{-1}(5). \] ### Final Result Therefore, the limit evaluates to: \[ \lim_{n \to \infty} \left( \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \frac{n}{n^2 + 3^2} + \ldots + \frac{n}{n^2 + (5n)^2} \right) = \tan^{-1}(5). \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 9|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 7|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

The value of lim_(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n) is equal to

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

Let alpha=lim_(n->oo)((1^3-1^2)+(2^3-2^2)+.....+(n^3-n^2))/(n^4), then alpha is equal to :