Home
Class 12
MATHS
If dy/dx+3/cos^2xy=1/cos^2x,x in((-pi)/3...

If `dy/dx+3/cos^2xy=1/cos^2x,x in((-pi)/3,pi/3)and y(pi/4)=4/3," then "y(-pi/4)` equals

A

`1/3+e^6`

B

`1/3`

C

`-1/4`

D

`1/3+e^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given in the problem, we will follow a systematic approach. ### Step-by-Step Solution: 1. **Write the Differential Equation**: The given equation is: \[ \frac{dy}{dx} + \frac{3}{\cos^2 x} y = \frac{1}{\cos^2 x} \] 2. **Identify p(x) and q(x)**: Here, we can identify: \[ p(x) = \frac{3}{\cos^2 x}, \quad q(x) = \frac{1}{\cos^2 x} \] 3. **Find the Integrating Factor**: The integrating factor \( \mu(x) \) is given by: \[ \mu(x) = e^{\int p(x) \, dx} = e^{\int \frac{3}{\cos^2 x} \, dx} \] The integral of \( \frac{3}{\cos^2 x} \) is: \[ \int \frac{3}{\cos^2 x} \, dx = 3 \tan x \] Therefore, the integrating factor is: \[ \mu(x) = e^{3 \tan x} \] 4. **Multiply the Equation by the Integrating Factor**: Multiply the entire differential equation by \( e^{3 \tan x} \): \[ e^{3 \tan x} \frac{dy}{dx} + 3 e^{3 \tan x} \frac{y}{\cos^2 x} = e^{3 \tan x} \frac{1}{\cos^2 x} \] 5. **Rewrite the Left Side**: The left side can be rewritten as: \[ \frac{d}{dx} \left( e^{3 \tan x} y \right) = e^{3 \tan x} \sec^2 x \] 6. **Integrate Both Sides**: Integrate both sides: \[ e^{3 \tan x} y = \int e^{3 \tan x} \sec^2 x \, dx \] The right side can be solved using substitution. Let \( u = \tan x \), then \( du = \sec^2 x \, dx \): \[ \int e^{3u} \, du = \frac{1}{3} e^{3u} + C = \frac{1}{3} e^{3 \tan x} + C \] 7. **Solve for y**: Thus, we have: \[ e^{3 \tan x} y = \frac{1}{3} e^{3 \tan x} + C \] Dividing by \( e^{3 \tan x} \): \[ y = \frac{1}{3} + C e^{-3 \tan x} \] 8. **Use Initial Condition to Find C**: We know \( y\left(\frac{\pi}{4}\right) = \frac{4}{3} \): \[ \frac{4}{3} = \frac{1}{3} + C e^{-3 \cdot 1} \] Simplifying gives: \[ C e^{-3} = \frac{4}{3} - \frac{1}{3} = 1 \implies C = e^{3} \] 9. **Final Solution for y**: The solution for \( y \) is: \[ y = \frac{1}{3} + e^{3} e^{-3 \tan x} \] 10. **Find y(-π/4)**: Now, we need to find \( y\left(-\frac{\pi}{4}\right) \): \[ y\left(-\frac{\pi}{4}\right) = \frac{1}{3} + e^{3} e^{-3 \cdot (-1)} = \frac{1}{3} + e^{3} e^{3} = \frac{1}{3} + e^{6} \] ### Final Answer: \[ y\left(-\frac{\pi}{4}\right) = \frac{1}{3} + e^{6} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 9|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If (dy)/(dx)+3/(cos^(2)x)y=1/(cos^(2)x),xin((-pi)/3,(pi)/3), and y((pi)/4)=4/3 , then y(-(pi)/4) equals 1/3+e^(k) . The value of k is __________.

Let y(x) be the solution of the differential equation (dy)/(dx)+(3y)/(cos^2x)=1/(cos^2x) and y(pi/4)=4/3 then vaue of y(-pi/4) is equal to (a) -4/3 (b) 1/3 (c) e^6+1/3 (d) 3

If y= y(x) is the solution of the differential equation dy/dx=(tan x-y) sec^(2)x, x in(-pi/2,pi/2), such that y (0)=0, than y(-pi/4) is equal to

Let y=g(x) be the solution of the differential equation sinx ((dy)/(dx))+y cos x=4x, x in (0,pi) If y(pi/2)=0 , then y(pi/6) is equal to

If cos x (dy)/(dx)-y sin x = 6x, (0 lt x lt (pi)/(2)) and y((pi)/(3))=0 , then y((pi)/(6)) is equal to :-

If cos^2 2x+2cos^2x=1,\ x in (-pi,pi), then x can take the values : +-pi/2 (b) +-pi/4 +-(3pi)/4 (d) none of these

Prove that cos^2x+cos^2(x+pi/3)+cos^2(x-pi/3)=3/2 .

Solution of the equation cos^2x(dy)/(dx)-(tan2x)y=cos^4x , where |x|< pi/4 and y(pi/6)=(3sqrt(3))/8 is

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

If (cos^2x+1/(cos^2x)) (1+tan^2 2y)(3+sin3z)=4, then x is an integral multiple of pi x cannot be an even multiple of pi z is an integral multiple of pi y is an integral multiple of pi/2