Home
Class 12
MATHS
Semi transverse axis of hyperbola is 5. ...

Semi transverse axis of hyperbola is 5. Tangent at point P and normal to this tangent meet conjugate axis at A and B, respectively. The circle on AB as diameter passes through tow fixed points, the distance between which is 20. Find the eccentricity of hyperbola.

Text Solution

AI Generated Solution

To solve the problem step by step, we will follow the details provided in the transcript and derive the necessary values systematically. ### Step 1: Identify the parameters of the hyperbola Given that the semi-transverse axis (a) of the hyperbola is 5, we have: \[ a = 5 \] ### Step 2: Write the equation of the hyperbola The standard form of the hyperbola with the transverse axis along the x-axis is: ...
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|3 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|12 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • HIGHT AND DISTANCE

    CENGAGE ENGLISH|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

If a hyperbola has length of its conjugate axis equal to 5 and the distance between its foci is 13, then the eccentricity of the hyperbola is

If S be the focus of the parabola and tangent and normal at any point P meet its axis in T and G respectively, then prove that ST=SG = SP .

The tangents and normal at a point on (x^(2))/(a^(2))-(y^(2))/(b^(2)) =1 cut the y-axis A and B. Then the circle on AB as diameter passes through the focii of the hyperbola

The length of the transverse axis and the conjugate axis of a hyperbola is 2a units and 2b units repectively. If the length of the latus rectum is 4 units of the conjugate axis is equal to one-third of the distance between the foci, then the eccentricity of the hyperbola is

If normal at P to a hyperbola of eccentricity e intersects its transverse and conjugate axes at L and M, respectively, then prove that the locus of midpoint of LM is a hyperbola. Find the eccentricity of this hyperbola

A hyperbola has its centre at the origin, passes through the point (4, 2) and has transverse axis of length 4 along the x-axis. Then the eccentricity of the hyperbola is

Find the equation of the hyperbola whose transverse and conjugate axes are the x and y axes respectively, given that the length of conjugate axis is 5 and distance between the foci is 13.

The tangent at any point on the ellipse 16x^(2)+25y^(2) = 400 meets the tangents at the ends of the major axis at T_(1) and T_(2) . The circle on T_(1)T_(2) as diameter passes through

A curve C has the property that if the tangent drawn at any point P on C meets the co-ordinate axis at A and B , then P is the mid-point of A Bdot The curve passes through the point (1,1). Determine the equation of the curve.

The tangent and normal at the point p(18, 12) of the parabola y^(2)=8x intersects the x-axis at the point A and B respectively. The equation of the circle through P, A and B is given by