Home
Class 12
MATHS
The locus a point P(alpha,beta) moving u...

The locus a point `P(alpha,beta)` moving under the condition that the line `y=alphax+beta` is a tangent to the hyperbola `x^2/a^2-y^2/b^2=1` is (A) a parabola (B) an ellipse (C) a hyperbola (D) a circle

Text Solution

Verified by Experts

The correct Answer is:
`(x^(2))/(b^(2)//a^(2))-(y^(2))/(b^(2))=1`

The line `y=alphax+beta` touches the hyperbola
`(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`
If `beta^(2)=a^(2)alpha^(2)-b^(2).`
Hence, the locus of `(alpha, beta)` is
`y^(2)=a^(2)x^(2)-b^(2)`
`"or "a^(2)x^(2)-y^(2)=b^(2)`
`"or "(x^(2))/(b^(2)//a^(2))-(y^(2))/(b^(2))=1`
which is a hyperbola
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|5 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|5 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|12 Videos
  • HIGHT AND DISTANCE

    CENGAGE ENGLISH|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

The locus of a point P(alpha, beta) moving under the condtion that the line y=alphax+beta is a tangent to the hyperbola (x^(2))/(1)-(y^(2))/(b^(2))=1 is a conic, with eccentricity equal to

The condition that the line x cos alpha + y sin alpha =p to be a tangent to the hyperbola x^(2)//a^(2) -y^(2)//b^(2) =1 is

The equation x^(2) - 2xy +y^(2) +3x +2 = 0 represents (a) a parabola (b) an ellipse (c) a hyperbola (d) a circle

The locus of the poles of the tangents to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 w.r.t. the circle x^2 + y^2 = a^2 is: (a) parabola (b) ellipse (c) hyperbola (d) circle

The locus of a point whose chord of contact with respect to the circle x^2+y^2=4 is a tangent to the hyperbola x y=1 is a/an (a)ellipse (b) circle (c)hyperbola (d) parabola

The locus of point of intersection of the lines x/a-y/b=m and x/a+y/b=1/m (i) a circle (ii) an ellipse (iii) a hyperbola (iv) a parabola

The locus of the point of intersection of the tangents at the end-points of normal chords of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is

The locus of the point of intersection of the tangent at the endpoints of the focal chord of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 ( b < a) (a) is a an circle (b) ellipse (c) hyperbola (d) pair of straight lines

If alpha-beta= constant, then the locus of the point of intersection of tangents at P(acosalpha,bsinalpha) and Q(acosbeta,bsinbeta) to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 is: (a) a circle (b) a straight line (c) an ellipse (d) a parabola

I If a point (alpha, beta) lies on the circle x^2 +y^2=1 then the locus of the point (3alpha.+2, beta), is