Home
Class 12
MATHS
Tangents are drawn to the hyperbola x^2/...

Tangents are drawn to the hyperbola `x^2/9-y^2/4=1` parallet to the sraight line `2x-y=1.` The points of contact of the tangents on the hyperbola are (A) `(9/(2sqrt2),1/sqrt2)` (B) `(-9/(2sqrt2),-1/sqrt2)` (C) `(3sqrt3,-2sqrt2)` (D) `(-3sqrt3,2sqrt2)`

A

`((9)/(2sqrt2),(1)/(sqrt2))`

B

`(-(9)/(2sqrt2),-(1)/(sqrt2))`

C

`(3sqrt3,-2sqrt2)`

D

`(3sqrt3,-2sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B

Slope of tangent = 2
The tangent are
`y=2xpmsqrt(9xx4-4)" "("using y"=mx pmsqrt(a^(2)m^(2)-b^(2)))`
`"i.e., "2x-y= pm 4sqrt2`
`"or "(x)/(2sqrt2)-(y)/(4sqrt2)=1 and (x)/(2sqrt2)-(y)/(4sqrt2)=-1`
Comparing it with `(x x_(1))/(9)-(yy_(1))/(4)=1` (Eqn. of tangent to hypebola at point `(x_(1),y_(1))` on it we get the point of contact as `(9//2sqrt2,1//sqrt2) and (-9//2sqrt2, -1//sqrt2)`.
Alternatye Mathod:
The equation of tangent at `P(theta)` is
`((sec theta)/(3))x-((tan theta)/(2))y=1`
`therefore" Slope"=(2 sec theta)/(3 tan theta)=2`
`"or "sin theta=(1)/(3)`
`therefore" "sec theta= pm(3)/(2sqrt2)` and corresponding by tan `theta= pm (1)/(2sqrt2)`
Therefore, the points are `(9//2sqrt2,1//sqrt2)` and `(-9//2sqrt2, -1//sqrt2)`.
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise JEE MAIN|3 Videos
  • HIGHT AND DISTANCE

    CENGAGE ENGLISH|Exercise Archives|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos

Similar Questions

Explore conceptually related problems

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

The value of sqrt(3-2\ sqrt(2)) is (a) sqrt(2)-1 (b) sqrt(2)+1 (c) sqrt(3)-sqrt(2) (d) sqrt(3)+\ sqrt(2)

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))-(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))+(1)/(sqrt(2)+1)-(1)/(sqrt(2)-1)

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

1/(sqrt(9)-\ sqrt(8)) is equal to: (a) 3+2sqrt(2) (b) 1/(3+2sqrt(2)) (c) 3-2sqrt(2) (d) 3/2-\ sqrt(2)

Find (sqrt3 - sqrt 2)/(sqrt 3+sqrt 2) -(sqrt3 + sqrt 2)/(sqrt 3-sqrt 2) +1/(sqrt2+1)-1/(sqrt2-1)

The image of the centre of the circle x^2 + y^2 = 2a^2 with respect to the line x + y = 1 is : (A) (sqrt(2), sqrt(2) (B) (1/sqrt(2) , sqrt(2) ) (C) (sqrt(2), 1/sqrt(2)) (D) none of these