Home
Class 12
MATHS
Find the possible values of sin^(-1) (1 ...

Find the possible values of `sin^(-1) (1 - x) + cos^(-1) sqrt(x -2)`

A

0

B

`{-1,1}

C

2

D

-1/2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the possible values of \( \sin^{-1}(1 - x) + \cos^{-1}(\sqrt{x - 2}) \), we will follow these steps: ### Step 1: Determine the domain of \( \sin^{-1}(1 - x) \) The function \( \sin^{-1}(y) \) is defined for \( y \) in the interval \([-1, 1]\). Therefore, we need to find the values of \( x \) such that: \[ -1 \leq 1 - x \leq 1 \] From the left inequality: \[ -1 \leq 1 - x \implies x \leq 2 \] From the right inequality: \[ 1 - x \leq 1 \implies x \geq 0 \] Thus, we have: \[ 0 \leq x \leq 2 \] ### Step 2: Determine the domain of \( \cos^{-1}(\sqrt{x - 2}) \) The function \( \cos^{-1}(y) \) is defined for \( y \) in the interval \([0, 1]\). Therefore, we need to find the values of \( x \) such that: \[ 0 \leq \sqrt{x - 2} \leq 1 \] From the left inequality: \[ 0 \leq \sqrt{x - 2} \implies x - 2 \geq 0 \implies x \geq 2 \] From the right inequality: \[ \sqrt{x - 2} \leq 1 \implies x - 2 \leq 1 \implies x \leq 3 \] Thus, we have: \[ 2 \leq x \leq 3 \] ### Step 3: Combine the domains Now we combine the two intervals we found: 1. From \( \sin^{-1}(1 - x) \): \( 0 \leq x \leq 2 \) 2. From \( \cos^{-1}(\sqrt{x - 2}) \): \( 2 \leq x \leq 3 \) The intersection of these intervals is: \[ x = 2 \] ### Step 4: Evaluate the expression at \( x = 2 \) Now we substitute \( x = 2 \) into the expression: \[ \sin^{-1}(1 - 2) + \cos^{-1}(\sqrt{2 - 2}) \] This simplifies to: \[ \sin^{-1}(-1) + \cos^{-1}(0) \] We know that: \[ \sin^{-1}(-1) = -\frac{\pi}{2} \quad \text{and} \quad \cos^{-1}(0) = \frac{\pi}{2} \] Thus, we have: \[ -\frac{\pi}{2} + \frac{\pi}{2} = 0 \] ### Conclusion The possible value of \( \sin^{-1}(1 - x) + \cos^{-1}(\sqrt{x - 2}) \) is: \[ \boxed{0} \]

To solve the problem of finding the possible values of \( \sin^{-1}(1 - x) + \cos^{-1}(\sqrt{x - 2}) \), we will follow these steps: ### Step 1: Determine the domain of \( \sin^{-1}(1 - x) \) The function \( \sin^{-1}(y) \) is defined for \( y \) in the interval \([-1, 1]\). Therefore, we need to find the values of \( x \) such that: \[ -1 \leq 1 - x \leq 1 ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.2|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.3|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Illustration|85 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

Find the value of sin^(-1)(2^x) (ii) cos^(-1)sqrt(x^2-x+1) tan^(-1)(x^2)/(1+x^2) (iv) sec^(-1)(x+1/x)

Find the value of : sin (sin^(-1) x + cos^(-1) x)

Find the greatest and least values of (sin^(-1) x)^2+(cos^(-1)x)^2

Find all possible values of x and y for which cos^(-1)sqrtx+cos^(-1)sqrt(1-x)+cos^(-1)sqrt(1-y)=((3pi)/4)

Find the possible values of sqrt(|x|-2) (ii) sqrt(3-|x-1|) (iii) sqrt(4-sqrt(x^2))

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}]

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))