Home
Class 12
MATHS
Find the smallest and the largest values...

Find the smallest and the largest values of `tan^(-1) ((1 - x)/(1 + x)), 0 le x le 1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the smallest and largest values of the function \( f(x) = \tan^{-1} \left( \frac{1 - x}{1 + x} \right) \) for \( 0 \leq x \leq 1 \), we can follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \tan^{-1} \left( \frac{1 - x}{1 + x} \right) \] ### Step 2: Use a substitution Let \( x = \tan(\theta) \). Then, we can express the function in terms of \( \theta \): \[ f(\tan(\theta)) = \tan^{-1} \left( \frac{1 - \tan(\theta)}{1 + \tan(\theta)} \right) \] ### Step 3: Apply the tangent subtraction identity Using the identity \( \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \), we can rewrite the function: \[ f(\tan(\theta)) = \tan^{-1} \left( \tan\left(\frac{\pi}{4} - \theta\right) \right) \] This simplifies to: \[ f(\tan(\theta)) = \frac{\pi}{4} - \theta \] ### Step 4: Determine the range of \( \theta \) Given that \( x \) ranges from \( 0 \) to \( 1 \), we find the corresponding values of \( \theta \): - When \( x = 0 \), \( \theta = \tan^{-1}(0) = 0 \). - When \( x = 1 \), \( \theta = \tan^{-1}(1) = \frac{\pi}{4} \). ### Step 5: Evaluate the function at the endpoints Now we can evaluate \( f(x) \) at the endpoints of the interval: - For \( x = 0 \): \[ f(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] - For \( x = 1 \): \[ f(1) = \frac{\pi}{4} - \frac{\pi}{4} = 0 \] ### Step 6: Conclusion Thus, the smallest value of \( f(x) \) occurs at \( x = 1 \) and is \( 0 \), and the largest value occurs at \( x = 0 \) and is \( \frac{\pi}{4} \). ### Final Answer: - **Smallest value:** \( 0 \) - **Largest value:** \( \frac{\pi}{4} \)

To find the smallest and largest values of the function \( f(x) = \tan^{-1} \left( \frac{1 - x}{1 + x} \right) \) for \( 0 \leq x \leq 1 \), we can follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \tan^{-1} \left( \frac{1 - x}{1 + x} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.2|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.3|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Illustration|85 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(xsqrt(x)),0 le x le 1

Differentiate tan^(-1){(cosx)/(1+sinx)},\ 0 le x le pi

Find the largest value of x for which 2(x - 1) le 9 - x and x in W .

Find the greatest and least values of the function f(x)=(sin^(-1)x)^3+(cos^(-1)x)^3,-1 le x le 1

The maximum value of [x(x-1)+1]^(1/3), 0 le x le 1 is:

Determine the average value of y=2x+3 in the interval 0 le x le 1 .

Find the number of solutions of cos x =|1+ sin x |, 0 le x le 3 pi

Use real number line to find the range of values of x for which : -1 lt x le 6 and -2 le x le 3 .

For 2 lt x lt 4 find the values of |x|. (ii) For -3 le x le -1 , find the values of |x|. (iii) For -3 le x lt 1, find the values of |x| (iv) For -5 lt x lt 7 find the values of |x-2| (v) For 1 le x le 5 find fthe values of |2x -7|

Find the area of region : {(x,y) : 0 le y le x^(2) + 1, 0 le y le x + 1,0 le x le 2} .