Home
Class 12
MATHS
If (sin^(-1)x)^2+(sin^(-1)y)^2+(sin^(-1)...

If `(sin^(-1)x)^2+(sin^(-1)y)^2+(sin^(-1)z)^2=3/4pi^2` , find the value of `x^2+y^2+z^2` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + y^2 + z^2 \) given that \[ (\sin^{-1} x)^2 + (\sin^{-1} y)^2 + (\sin^{-1} z)^2 = \frac{3}{4} \pi^2. \] ### Step-by-Step Solution: 1. **Understanding the Range of \( \sin^{-1} x \)**: The function \( \sin^{-1} x \) (inverse sine) has a range of \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \) for \( x \) in the interval \([-1, 1]\). Therefore, the maximum value of \( \sin^{-1} x \) is \( \frac{\pi}{2} \). 2. **Finding the Maximum Value of the Squares**: Since \( \sin^{-1} x \) can take values from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \), the maximum value of \( (\sin^{-1} x)^2 \) is: \[ \left(\frac{\pi}{2}\right)^2 = \frac{\pi^2}{4}. \] Thus, we have: \[ (\sin^{-1} x)^2 \leq \frac{\pi^2}{4}, \quad (\sin^{-1} y)^2 \leq \frac{\pi^2}{4}, \quad (\sin^{-1} z)^2 \leq \frac{\pi^2}{4}. \] 3. **Adding the Inequalities**: Adding these inequalities gives: \[ (\sin^{-1} x)^2 + (\sin^{-1} y)^2 + (\sin^{-1} z)^2 \leq 3 \cdot \frac{\pi^2}{4} = \frac{3\pi^2}{4}. \] This matches the condition given in the problem: \[ (\sin^{-1} x)^2 + (\sin^{-1} y)^2 + (\sin^{-1} z)^2 = \frac{3}{4} \pi^2. \] 4. **Equality Condition**: The equality holds when each term reaches its maximum value. Therefore, we can conclude: \[ \sin^{-1} x = \pm \frac{\pi}{2}, \quad \sin^{-1} y = \pm \frac{\pi}{2}, \quad \sin^{-1} z = \pm \frac{\pi}{2}. \] 5. **Finding Values of \( x, y, z \)**: From \( \sin^{-1} x = \pm \frac{\pi}{2} \), we have: \[ x = \pm 1, \quad y = \pm 1, \quad z = \pm 1. \] 6. **Calculating \( x^2 + y^2 + z^2 \)**: Now, we calculate \( x^2 + y^2 + z^2 \): \[ x^2 + y^2 + z^2 = 1^2 + 1^2 + 1^2 = 1 + 1 + 1 = 3. \] ### Final Answer: Thus, the value of \( x^2 + y^2 + z^2 \) is \[ \boxed{3}. \]

To solve the problem, we need to find the value of \( x^2 + y^2 + z^2 \) given that \[ (\sin^{-1} x)^2 + (\sin^{-1} y)^2 + (\sin^{-1} z)^2 = \frac{3}{4} \pi^2. \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.2|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.3|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Illustration|85 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, find the value of x^2+y^2+z^2

If x , y , z in [-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=-(3pi)/2, find the value of x^2+y^2+z^2dot

If x , y , z in [-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=-(3pi)/2, find the value of x^2+y^2+z^2dot

If sin^(-1)x+sin^(-1)y+sin^(-1)z+sin^(-1)t=2pi , then find the value of x^2+y^2+z^2+t^2 .

If sin^-1x+sin^-1y+sin^-1z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , then write the value of x+y+z .

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

Let x ,\ y ,\ z in [-1,\ 1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 . Find the value of x^(2018)+y^(2019)+z^(2020)

If sin^(-1) x + sin^(-1) y + sin^(-1) z = (3pi)/2 ",then find the value of " Sigma ((x^(101) + y ^(101))(x^(202)+y^(202)))/((x^(303)+y^(303))(x^(404)+y^(404)))