Home
Class 12
MATHS
Prove that sin^(-1). ((x + sqrt(1 - x^(2...

Prove that `sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4)`, where `- (1)/(sqrt2) lt x lt(1)/(sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
`sin^(-1) x + (pi)/(4)`

Let `x = sin theta`, where
`-(1)/(sqrt2) lt x lt (1)/(sqrt2)`
`rArr - (pi)/(4) lt theta lt (pi)/(4)`
`sin^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = sin.^(-1) ((sin theta + cos theta)/(sqrt2))`
`= sin.^(-1) (sin (theta + (pi)/(4)))`
`= theta + (pi)/(4) ( :' theta + (pi)/(4) in (0, (pi)/(2)))`
`= sin^(-1) x + (pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.2|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.3|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Illustration|85 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

Prove that sin^(-1) {(sqrt(1 + x) + sqrt(1 - x))/(2)} = (pi)/(4) + (cos^(-1) x)/(2), 0 lt x lt 1

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/2}=pi/2-(sin^(-1)x)/2,""0 < x < 1

Prove that sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))

Prove that : int_0^(pi/2)sqrt(1-sin2x)dx=2(sqrt(2)-1)

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Differentiate tan^(-1)(x/(sqrt(1-x^2))) with respect to sin^(-1)(2xsqrt(1-x^2)), if -1/(sqrt(2)) < x< 1 /(sqrt(2))