Home
Class 12
MATHS
For x, y, z, t in R, sin^(-1) x + cos^(-...

For `x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi`
The principal value of `cos^(-1) (cos 5t^(2))` is

A

`(3pi)/(2)`

B

`(pi)/(2)`

C

`(pi)/(3)`

D

`(2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will analyze the given inequality and find the principal value of \( \cos^{-1}(\cos(5t^2)) \). ### Step 1: Understand the inequality We start with the inequality: \[ \sin^{-1}(x) + \cos^{-1}(y) + \sec^{-1}(z) \geq t^2 - \sqrt{2\pi t} + 3\pi \] ### Step 2: Analyze the ranges of the inverse functions The ranges of the inverse trigonometric functions are: - \( \sin^{-1}(x) \) is in \([- \frac{\pi}{2}, \frac{\pi}{2}]\) - \( \cos^{-1}(y) \) is in \([0, \pi]\) - \( \sec^{-1}(z) \) is in \([0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]\) ### Step 3: Find the maximum value of the left-hand side The maximum value of \( \sin^{-1}(x) + \cos^{-1}(y) + \sec^{-1}(z) \) occurs when: - \( \sin^{-1}(x) = \frac{\pi}{2} \) (which implies \( x = 1 \)) - \( \cos^{-1}(y) = \pi \) (which implies \( y = -1 \)) - \( \sec^{-1}(z) = \frac{\pi}{2} \) (which implies \( z = 1 \)) Thus, the maximum value of the left-hand side is: \[ \frac{\pi}{2} + \pi + \frac{\pi}{2} = 2\pi \] ### Step 4: Analyze the right-hand side Now, we need to analyze the right-hand side: \[ t^2 - \sqrt{2\pi t} + 3\pi \] To find the minimum value of this expression, we can complete the square. ### Step 5: Completing the square The expression can be rewritten as: \[ t^2 - \sqrt{2\pi}t + 3\pi \] Completing the square: \[ = \left(t - \frac{\sqrt{2\pi}}{2}\right)^2 + \left(3\pi - \frac{2\pi}{4}\right) \] This shows that the minimum value occurs at \( t = \frac{\sqrt{2\pi}}{2} \). ### Step 6: Find the minimum value Substituting \( t = \frac{\sqrt{2\pi}}{2} \): \[ \left(\frac{\sqrt{2\pi}}{2}\right)^2 - \sqrt{2\pi}\left(\frac{\sqrt{2\pi}}{2}\right) + 3\pi = \frac{2\pi}{4} - \frac{2\pi}{2} + 3\pi = -\frac{2\pi}{4} + 3\pi = \frac{10\pi}{4} = \frac{5\pi}{2} \] ### Step 7: Set the inequality Thus, we have: \[ \sin^{-1}(1) + \cos^{-1}(-1) + \sec^{-1}(1) \geq \frac{5\pi}{2} \] This implies: \[ \frac{\pi}{2} + \pi + \frac{\pi}{2} = 2\pi \geq \frac{5\pi}{2} \] This inequality holds true. ### Step 8: Find the principal value of \( \cos^{-1}(\cos(5t^2)) \) Now, we need to find \( \cos^{-1}(\cos(5t^2)) \): \[ t = \frac{\sqrt{2\pi}}{2} \implies t^2 = \frac{2\pi}{4} = \frac{\pi}{2} \] Thus, \[ 5t^2 = 5 \cdot \frac{\pi}{2} = \frac{5\pi}{2} \] ### Step 9: Calculate \( \cos^{-1}(\cos(\frac{5\pi}{2})) \) The angle \( \frac{5\pi}{2} \) can be simplified: \[ \frac{5\pi}{2} - 2\pi = \frac{\pi}{2} \] Thus, \[ \cos^{-1}(\cos(\frac{5\pi}{2})) = \cos^{-1}(\cos(\frac{\pi}{2})) = \frac{\pi}{2} \] ### Final Answer The principal value of \( \cos^{-1}(\cos(5t^2)) \) is: \[ \frac{\pi}{2} \]

To solve the problem step-by-step, we will analyze the given inequality and find the principal value of \( \cos^{-1}(\cos(5t^2)) \). ### Step 1: Understand the inequality We start with the inequality: \[ \sin^{-1}(x) + \cos^{-1}(y) + \sec^{-1}(z) \geq t^2 - \sqrt{2\pi t} + 3\pi \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value type|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of cos^(-1) ("min" {x, y, z}) is

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

For x,y,z,t in R , if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*t+3pi , then the value of tan^(-1)x+tan^(-1)y+tan^(-1)z+tan^(-1)( sqrt((2)/(pi))t) is __________.

Write the principal value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3)

Write the principal value of cos^(-1)(cos((2pi)/3))+sin^(-1)(sin((2pi)/3))

What is the principal value of cos^(-1)cos((2pi)/3)+sin^(-1)sin((2pi)/3)?

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

What is the principal value of cos^(-1)(cos(("2pi")/3))+sin^(-1)(sin(("2pi")/3))?

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

The number of triple satisfying sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi is

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Linked comprehension type
  1. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  2. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  3. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  4. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  5. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  6. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  7. Consider the system of equations cos^(-1)x + (sin^(-1) y)^(2) = (p pi^...

    Text Solution

    |

  8. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  9. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  10. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  11. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  12. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1], t...

    Text Solution

    |

  13. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  14. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  15. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |

  16. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |