Home
Class 12
MATHS
For x, y, z, t in R, sin^(-1) x + cos^(-...

For `x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi`
The value of `cos^(-1) ("min" {x, y, z})` is

A

0

B

`(pi)/(2)`

C

`pi`

D

`(pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given inequality and find the value of \( \cos^{-1}(\min\{x, y, z\}) \). ### Step-by-Step Solution: 1. **Understanding the Given Inequality**: We start with the inequality: \[ \sin^{-1}(x) + \cos^{-1}(y) + \sec^{-1}(z) \geq t^2 - \sqrt{2\pi t} + 3\pi \] 2. **Identifying the Ranges**: - The range of \( \sin^{-1}(x) \) is \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). - The range of \( \cos^{-1}(y) \) is \( [0, \pi] \). - The range of \( \sec^{-1}(z) \) is \( [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi] \). 3. **Finding Maximum Values**: The maximum values of each function are: - \( \sin^{-1}(x) \) can be at most \( \frac{\pi}{2} \). - \( \cos^{-1}(y) \) can be at most \( \pi \). - \( \sec^{-1}(z) \) can be at most \( \pi \). Therefore, the maximum possible sum is: \[ \sin^{-1}(x) + \cos^{-1}(y) + \sec^{-1}(z) \leq \frac{\pi}{2} + \pi + \pi = \frac{5\pi}{2} \] 4. **Setting Up the Inequality**: From the inequality, we can write: \[ t^2 - \sqrt{2\pi t} + 3\pi \leq \frac{5\pi}{2} \] 5. **Rearranging the Inequality**: Rearranging gives us: \[ t^2 - \sqrt{2\pi t} + 3\pi - \frac{5\pi}{2} \leq 0 \] Simplifying this: \[ t^2 - \sqrt{2\pi t} + \frac{1\pi}{2} \leq 0 \] 6. **Completing the Square**: We can complete the square for the quadratic in \( t \): \[ \left(t - \frac{\sqrt{2\pi}}{2}\right)^2 - \frac{2\pi}{4} + \frac{\pi}{2} \leq 0 \] This simplifies to: \[ \left(t - \frac{\sqrt{2\pi}}{2}\right)^2 \leq 0 \] This implies: \[ t - \frac{\sqrt{2\pi}}{2} = 0 \implies t = \frac{\sqrt{2\pi}}{2} \] 7. **Finding Values of \( x, y, z \)**: To satisfy the original inequality, we can set: - \( \sin^{-1}(x) = \frac{\pi}{2} \) which gives \( x = 1 \). - \( \cos^{-1}(y) = \pi \) which gives \( y = -1 \). - \( \sec^{-1}(z) = \pi \) which gives \( z = -1 \). 8. **Finding the Minimum**: Now we find \( \min\{x, y, z\} = \min\{1, -1, -1\} = -1 \). 9. **Calculating \( \cos^{-1}(\min\{x, y, z\}) \)**: Finally, we compute: \[ \cos^{-1}(-1) = \pi \] ### Conclusion: The value of \( \cos^{-1}(\min\{x, y, z\}) \) is \( \pi \).

To solve the problem, we need to analyze the given inequality and find the value of \( \cos^{-1}(\min\{x, y, z\}) \). ### Step-by-Step Solution: 1. **Understanding the Given Inequality**: We start with the inequality: \[ \sin^{-1}(x) + \cos^{-1}(y) + \sec^{-1}(z) \geq t^2 - \sqrt{2\pi t} + 3\pi ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value type|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The principal value of cos^(-1) (cos 5t^(2)) is

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

For x,y,z,t in R , if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*t+3pi , then the value of tan^(-1)x+tan^(-1)y+tan^(-1)z+tan^(-1)( sqrt((2)/(pi))t) is __________.

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal to

If sin^(-1)x+sin^(-1)y+sin^(-1)z+sin^(-1)t=2pi , then find the value of x^2+y^2+z^2+t^2 .

If x , y , z in [-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=-(3pi)/2, find the value of x^2+y^2+z^2dot

If x , y , z in [-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=-(3pi)/2, find the value of x^2+y^2+z^2dot

If cos e c^(-1)x+cos e c^(-1)y+cos e c^(-1)z=-(3pi)/2, find the value of x/y+y/z+z/xdot

The number of triple satisfying sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi is

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Linked comprehension type
  1. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  2. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  3. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  4. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  5. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  6. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  7. Consider the system of equations cos^(-1)x + (sin^(-1) y)^(2) = (p pi^...

    Text Solution

    |

  8. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  9. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  10. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  11. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  12. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1], t...

    Text Solution

    |

  13. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  14. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  15. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |

  16. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |