Home
Class 12
MATHS
If ax + b sec(tan^-1 x) = c and ay + b s...

If `ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c,` then `(x+y)/(1-xy)` is equal to

A

`(2ab)/(a^(2) -c^(2))`

B

`(2ac)/(a^(2) -c^(2))`

C

`(c^(2) -b^(2))/(a^(2) + b^(2))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( ax + b \sec(\tan^{-1} x) = c \) 2. \( ay + b \sec(\tan^{-1} y) = c \) ### Step 1: Substitute Variables Let \( \tan^{-1} x = \alpha \) and \( \tan^{-1} y = \beta \). Then we can rewrite the equations as: \[ a \tan \alpha + b \sec \alpha = c \] \[ a \tan \beta + b \sec \beta = c \] ### Step 2: Rearranging the Equations From both equations, we can express \( b \sec \alpha \) and \( b \sec \beta \): \[ b \sec \alpha = c - a \tan \alpha \] \[ b \sec \beta = c - a \tan \beta \] ### Step 3: Square Both Sides Now, square both sides of the equations: \[ b^2 \sec^2 \alpha = (c - a \tan \alpha)^2 \] \[ b^2 \sec^2 \beta = (c - a \tan \beta)^2 \] ### Step 4: Use the Identity for Secant Recall that \( \sec^2 \theta = 1 + \tan^2 \theta \). Thus, we can rewrite the equations as: \[ b^2 (1 + \tan^2 \alpha) = c^2 - 2ac \tan \alpha + a^2 \tan^2 \alpha \] \[ b^2 (1 + \tan^2 \beta) = c^2 - 2ac \tan \beta + a^2 \tan^2 \beta \] ### Step 5: Combine the Equations Now, we can combine the equations: \[ b^2 + b^2 \tan^2 \alpha = c^2 - 2ac \tan \alpha + a^2 \tan^2 \alpha \] \[ b^2 + b^2 \tan^2 \beta = c^2 - 2ac \tan \beta + a^2 \tan^2 \beta \] ### Step 6: Rearranging and Collecting Terms Rearranging gives us: \[ (b^2 - a^2) \tan^2 \alpha + 2ac \tan \alpha + (b^2 - c^2) = 0 \] \[ (b^2 - a^2) \tan^2 \beta + 2ac \tan \beta + (b^2 - c^2) = 0 \] ### Step 7: Sum and Product of Roots From the quadratic equations, we can identify the sum and product of the roots: - Sum of roots \( \tan \alpha + \tan \beta = -\frac{2ac}{b^2 - a^2} \) - Product of roots \( \tan \alpha \tan \beta = \frac{b^2 - c^2}{b^2 - a^2} \) ### Step 8: Finding \( \frac{x+y}{1-xy} \) We know that: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] Substituting the values we found: \[ \frac{x + y}{1 - xy} = \frac{-\frac{2ac}{b^2 - a^2}}{1 - \frac{b^2 - c^2}{b^2 - a^2}} \] ### Step 9: Simplifying the Expression Now simplify the denominator: \[ 1 - \frac{b^2 - c^2}{b^2 - a^2} = \frac{(b^2 - a^2) - (b^2 - c^2)}{b^2 - a^2} = \frac{c^2 - a^2}{b^2 - a^2} \] Thus, we have: \[ \frac{x + y}{1 - xy} = \frac{-\frac{2ac}{b^2 - a^2}}{\frac{c^2 - a^2}{b^2 - a^2}} = -\frac{2ac}{c^2 - a^2} \] ### Final Result Therefore, the value of \( \frac{x+y}{1-xy} \) is: \[ \frac{2ac}{a^2 - c^2} \]

To solve the problem, we start with the given equations: 1. \( ax + b \sec(\tan^{-1} x) = c \) 2. \( ay + b \sec(\tan^{-1} y) = c \) ### Step 1: Substitute Variables Let \( \tan^{-1} x = \alpha \) and \( \tan^{-1} y = \beta \). Then we can rewrite the equations as: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value type|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If x = a sec theta, y = b tan theta " then " (dy)/(dx) = ?

int " sec (tan"^(_1)" x ) dx "

For n in N, let f_(n) (x) = tan ""(x)/(2) (1+ sec x ) (1+ sec 2x) (1+ sec 4x)……(1+ sec 2 ^(n)x), the lim _(xto0) (f _(n)(x))/(2x) is equal to :

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

In a right angled triangle ABC, the bisector of the right angle C divides AB into segment x and y and tan((A-B)/(2))=t, then x:y is equal to

If a chord joining P(a sec theta, a tan theta), Q(a sec alpha, a tan alpha) on the hyperbola x^(2)-y^(2) =a^(2) is the normal at P, then tan alpha is (a) tan theta (4 sec^(2) theta+1) (b) tan theta (4 sec^(2) theta -1) (c) tan theta (2 sec^(2) theta -1) (d) tan theta (1-2 sec^(2) theta)

x =a tan theta ,y =b sec theta find dy/dx

If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then:

If the maximum value of (sec^-1 x)^2 + (cosec^-1 x)^2 approaches a, the minimum value of (tan^-1 x)^3 +(cot^-1 x)^3 approaches b then (a+b/pi) is equal to

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Linked comprehension type
  1. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  2. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  3. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  4. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  5. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  6. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  7. Consider the system of equations cos^(-1)x + (sin^(-1) y)^(2) = (p pi^...

    Text Solution

    |

  8. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  9. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  10. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  11. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  12. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1], t...

    Text Solution

    |

  13. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  14. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  15. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |

  16. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |