Home
Class 12
MATHS
Consider the system of equations cos^(-1...

Consider the system of equations `cos^(-1)x + (sin^(-1) y)^(2) = (p pi^(2))/(4) and (cos^(-1) x) (sin^(-1) y)^(2) = (pi^(4))/(16), p in Z`
The value of p for which system has a solution is

A

1

B

2

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations: 1. **Equations**: \[ \cos^{-1} x + (\sin^{-1} y)^2 = \frac{p \pi^2}{4} \quad (1) \] \[ (\cos^{-1} x)(\sin^{-1} y)^2 = \frac{\pi^4}{16} \quad (2) \] 2. **Substitutions**: Let: \[ \cos^{-1} x = a \quad \text{and} \quad \sin^{-1} y = b \] Thus, the equations become: \[ a + b^2 = \frac{p \pi^2}{4} \quad (3) \] \[ ab^2 = \frac{\pi^4}{16} \quad (4) \] 3. **Range of Variables**: - Since \( a = \cos^{-1} x \), we have \( a \in [0, \pi] \). - Since \( b = \sin^{-1} y \), we have \( b \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). 4. **Finding the Range of \( b^2 \)**: - The minimum value of \( b^2 \) is \( 0 \) (when \( b = 0 \)). - The maximum value of \( b^2 \) is \( \left(\frac{\pi}{2}\right)^2 = \frac{\pi^2}{4} \). 5. **Substituting \( b^2 \) into Equation (3)**: - From equation (3): \[ a + b^2 = \frac{p \pi^2}{4} \] - The minimum value of \( a + b^2 \) is \( 0 + 0 = 0 \). - The maximum value of \( a + b^2 \) is \( \pi + \frac{\pi^2}{4} \). 6. **Setting Up Inequalities**: From the range of \( a + b^2 \): \[ 0 \leq \frac{p \pi^2}{4} \leq \pi + \frac{\pi^2}{4} \] 7. **Multiplying Through by 4**: \[ 0 \leq p \pi^2 \leq 4\pi + \pi^2 \] 8. **Dividing by \( \pi^2 \)** (assuming \( \pi^2 > 0 \)): \[ 0 \leq p \leq \frac{4\pi}{\pi^2} + 1 = \frac{4}{\pi} + 1 \] 9. **Calculating \( \frac{4}{\pi} \)**: - Approximate \( \pi \approx 3.14 \): \[ \frac{4}{\pi} \approx \frac{4}{3.14} \approx 1.273 \] - Therefore: \[ 0 \leq p \leq 2.273 \] 10. **Finding Integer Values**: Since \( p \) must be an integer (\( p \in \mathbb{Z} \)): \[ p = 0, 1, 2 \] 11. **Verifying Solutions**: - Substitute \( p = 0, 1, 2 \) back into the equations to check for valid solutions. - For \( p = 2 \), we can find specific values for \( a \) and \( b \) that satisfy both equations. 12. **Conclusion**: The values of \( p \) for which the system has a solution are: \[ \boxed{2} \]

To solve the given system of equations: 1. **Equations**: \[ \cos^{-1} x + (\sin^{-1} y)^2 = \frac{p \pi^2}{4} \quad (1) \] \[ (\cos^{-1} x)(\sin^{-1} y)^2 = \frac{\pi^4}{16} \quad (2) ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value type|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, find the value of x^2+y^2+z^2

(i) Evaluate : sec (cos^(-1).(1)/(2)) (ii) slove the equations sin^(-1) x + sin^(-1) y = (2pi)/(3) and cos^(-1) x - cos ^(-1) y = (pi)/(3)

Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1

If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/4 and (sin^-1y)^2 - (cos^-1 x) = pi^2/16 is consistent,then n can be equal to-

If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/4 and (sin^-1y)^2 - (cos^-1 x) = pi^2/16 is consistent,then n can be equal to-

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , then write the value of x+y+z .

Solve for x and y the system of equations sinx cos 2y=1 cosx sin 2y=0

Consider the equation sin^(-1)(x^(2)-6x+(17)/(2))+cos^(-1)k=(pi)/(2) , then :

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Linked comprehension type
  1. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  2. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  3. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  4. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  5. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  6. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  7. Consider the system of equations cos^(-1)x + (sin^(-1) y)^(2) = (p pi^...

    Text Solution

    |

  8. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  9. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  10. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  11. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  12. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1], t...

    Text Solution

    |

  13. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  14. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  15. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |

  16. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |