Home
Class 12
MATHS
If nin N and the set of equations, (sin^...

If `nin N` and the set of equations, `(sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/4 and (sin^-1y)^2 - (cos^-1 x) = pi^2/16` is consistent,then n can be equal to-

A

1

B

`-1`

C

`(1)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equations and find the value of \( n \) that satisfies the conditions. The equations are: 1. \( (\sin^{-1} y)^2 + \cos^{-1} x = \frac{n \pi^2}{4} \) 2. \( (\sin^{-1} y)^2 - \cos^{-1} x = \frac{\pi^2}{16} \) We will follow these steps: ### Step 1: Add the two equations Adding both equations, we get: \[ (\sin^{-1} y)^2 + \cos^{-1} x + (\sin^{-1} y)^2 - \cos^{-1} x = \frac{n \pi^2}{4} + \frac{\pi^2}{16} \] This simplifies to: \[ 2(\sin^{-1} y)^2 = \frac{n \pi^2}{4} + \frac{\pi^2}{16} \] ### Step 2: Simplify the right-hand side To combine the terms on the right-hand side, we need a common denominator: \[ \frac{n \pi^2}{4} = \frac{4n \pi^2}{16} \] Thus, we can write: \[ 2(\sin^{-1} y)^2 = \frac{4n \pi^2 + \pi^2}{16} = \frac{(4n + 1) \pi^2}{16} \] ### Step 3: Isolate \( (\sin^{-1} y)^2 \) Dividing both sides by 2, we have: \[ (\sin^{-1} y)^2 = \frac{(4n + 1) \pi^2}{32} \] ### Step 4: Take the square root Taking the square root of both sides gives: \[ \sin^{-1} y = \sqrt{\frac{(4n + 1) \pi^2}{32}} = \frac{\pi \sqrt{4n + 1}}{4\sqrt{2}} \] ### Step 5: Determine the range of \( \sin^{-1} y \) The range of \( \sin^{-1} y \) is from \( 0 \) to \( \frac{\pi}{2} \). Therefore, we have: \[ 0 \leq \frac{\pi \sqrt{4n + 1}}{4\sqrt{2}} \leq \frac{\pi}{2} \] ### Step 6: Remove \( \pi \) and solve the inequality Dividing through by \( \pi \) (which is positive), we get: \[ 0 \leq \frac{\sqrt{4n + 1}}{4\sqrt{2}} \leq \frac{1}{2} \] Multiplying through by \( 4\sqrt{2} \): \[ 0 \leq \sqrt{4n + 1} \leq 2\sqrt{2} \] ### Step 7: Square the inequality Squaring the inequality gives: \[ 0 \leq 4n + 1 \leq 8 \] This simplifies to: \[ -1 \leq 4n \leq 7 \] ### Step 8: Solve for \( n \) Dividing through by 4: \[ -\frac{1}{4} \leq n \leq \frac{7}{4} \] ### Step 9: Identify natural numbers Since \( n \) must be a natural number (i.e., \( n \in \mathbb{N} \)), the only natural number that satisfies this inequality is: \[ n = 1 \] ### Conclusion Thus, the value of \( n \) can be equal to: \[ \boxed{1} \]

To solve the problem, we need to analyze the given equations and find the value of \( n \) that satisfies the conditions. The equations are: 1. \( (\sin^{-1} y)^2 + \cos^{-1} x = \frac{n \pi^2}{4} \) 2. \( (\sin^{-1} y)^2 - \cos^{-1} x = \frac{\pi^2}{16} \) We will follow these steps: ### Step 1: Add the two equations ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value type|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)x-cos^(-1)y=pi/6 , find the values of x and y .

The solutions of the equation 1+(sin x - cos x)"sin" pi/4=2 "cos"^(2) (5 x)/2 is/are

If sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(-1)x-cos^(-1)y=-pi/3 then the number of values of (x,y) is

The equation 2 sin^(2) (pi/2 cos^(2) x)=1-cos (pi sin 2x) is safisfied by

If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1 , then

The soluation set of inequality (sinx+cos^(- 1)x)-(cosx-sin^-1x)>= pi/2, is equal to

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Linked comprehension type
  1. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  2. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  3. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  4. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  5. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  6. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  7. Consider the system of equations cos^(-1)x + (sin^(-1) y)^(2) = (p pi^...

    Text Solution

    |

  8. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  9. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  10. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  11. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  12. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1], t...

    Text Solution

    |

  13. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  14. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  15. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |

  16. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |