Home
Class 12
MATHS
Let cos^(-1) (4x^(3) -3x) = a + b cos^(-...

Let `cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x`
If `x in ((1)/(2), 1]`, then the value of `lim_( y to a)b cos (y)` is

A

`-1//3`

B

`-3`

C

`(1)/(3)`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit \( \lim_{y \to a} b \cos(y) \) given that \( \cos^{-1}(4x^3 - 3x) = a + b \cos^{-1}(x) \) for \( x \in \left( \frac{1}{2}, 1 \right] \). ### Step-by-Step Solution: 1. **Substitute \( x \) with \( \cos(\theta) \)**: Let \( x = \cos(\theta) \). Then, we have: \[ \cos^{-1}(4x^3 - 3x) = \cos^{-1}(4\cos^3(\theta) - 3\cos(\theta)) \] 2. **Use the identity for cosine of triple angle**: The expression \( 4\cos^3(\theta) - 3\cos(\theta) \) can be simplified using the triple angle formula: \[ 4\cos^3(\theta) - 3\cos(\theta) = \cos(3\theta) \] Therefore, we have: \[ \cos^{-1}(4\cos^3(\theta) - 3\cos(\theta)) = \cos^{-1}(\cos(3\theta)) = 3\theta \] 3. **Set the equation**: Now we can equate the two sides: \[ 3\theta = a + b \cos^{-1}(\cos(\theta)) \] Since \( \cos^{-1}(\cos(\theta)) = \theta \) for \( \theta \in [0, \pi] \), we can rewrite the equation as: \[ 3\theta = a + b\theta \] 4. **Rearranging the equation**: Rearranging gives: \[ (3 - b)\theta = a \] 5. **Identify \( a \) and \( b \)**: To find \( a \) and \( b \), we need to analyze the limits of \( x \): - For \( x = 1 \) (which corresponds to \( \theta = 0 \)): \[ a = 0 \quad \text{and} \quad b = 3 \] - For \( x = \frac{1}{2} \) (which corresponds to \( \theta = \frac{\pi}{3} \)): \[ 3\left(\frac{\pi}{3}\right) = a + b\left(\frac{\pi}{3}\right) \] This gives us the same values for \( a \) and \( b \). 6. **Calculate the limit**: Now, we need to find: \[ \lim_{y \to a} b \cos(y) \] Substituting the values of \( a \) and \( b \): \[ \lim_{y \to 0} 3 \cos(y) \] As \( y \to 0 \): \[ \cos(0) = 1 \] Therefore: \[ 3 \cdot 1 = 3 \] ### Final Answer: The value of \( \lim_{y \to a} b \cos(y) \) is \( \boxed{3} \).

To solve the problem, we need to find the limit \( \lim_{y \to a} b \cos(y) \) given that \( \cos^{-1}(4x^3 - 3x) = a + b \cos^{-1}(x) \) for \( x \in \left( \frac{1}{2}, 1 \right] \). ### Step-by-Step Solution: 1. **Substitute \( x \) with \( \cos(\theta) \)**: Let \( x = \cos(\theta) \). Then, we have: \[ \cos^{-1}(4x^3 - 3x) = \cos^{-1}(4\cos^3(\theta) - 3\cos(\theta)) ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value type|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

Define y=cos^(-1)(4x^(3)-3x) in terms of cos^(-1)x

Let cos^(-1)(4x^(3)-3x)=a+b cos^(-1)x Q. If x in [-(1)/(2), (1)/(2)] , then sin^(-1)("sin"(a)/(b)) is :

If lim_(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1 , then the value of ab is euqal to

The value of lim_(xrarroo) x^(2)(1-cos.(1)/(x)) is

If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)x-cos^(-1)y=pi/6 , find the values of x and y .

If cos^(-1)((x)/(3))+cos^(-1)((y)/(2))=(theta)/(2) , then the value of 4x^(2)-12xy cos((theta)/(2))+9y^(2) is equal to :

Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a + b) then If 5 sec^(-1) x + 10 sin^(-1) y = 10 (a + b + c) then the value of tan^(-1) x + cos^(-1) (y -1) is

lim_(x to 0) (cos 2x-1)/(cos x-1)

Let x+(1)/(x)=2, y+(1)/(y)=-2 and sin^(-1)x+cos^(-1)y=m pi , then the value of m is

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Linked comprehension type
  1. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  2. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  3. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  4. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  5. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  6. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  7. Consider the system of equations cos^(-1)x + (sin^(-1) y)^(2) = (p pi^...

    Text Solution

    |

  8. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  9. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  10. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  11. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  12. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1], t...

    Text Solution

    |

  13. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  14. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  15. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |

  16. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |