Home
Class 12
MATHS
Let a = cos^(-1) cos 20, b = cos^(-1) co...

Let `a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a + b)` then
The largest integer x for which `sin^(-1) (sin x) ge |x -(a + b + c)|` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the logic presented in the video transcript and clarify each step. ### Step 1: Define the Variables Let: - \( a = \cos^{-1}(\cos 20^\circ) \) - \( b = \cos^{-1}(\cos 30^\circ) \) - \( c = \sin^{-1}(\sin(a + b)) \) ### Step 2: Calculate \( a \) Using the property of the inverse cosine function: \[ \cos^{-1}(\cos x) = x \quad \text{for } x \in [0, \pi] \] Since \( 20^\circ \) is in the range \( [0, \pi] \): \[ a = 20^\circ \] ### Step 3: Calculate \( b \) Similarly, for \( b \): \[ b = \cos^{-1}(\cos 30^\circ) = 30^\circ \] ### Step 4: Calculate \( a + b \) Now, we can calculate \( a + b \): \[ a + b = 20^\circ + 30^\circ = 50^\circ \] ### Step 5: Calculate \( c \) Next, we need to find \( c \): \[ c = \sin^{-1}(\sin(a + b)) = \sin^{-1}(\sin 50^\circ) \] Since \( 50^\circ \) is in the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \), we have: \[ c = 50^\circ \] ### Step 6: Calculate \( a + b + c \) Now, we can calculate: \[ a + b + c = 50^\circ + 50^\circ = 100^\circ \] ### Step 7: Set up the Inequality We need to find the largest integer \( x \) such that: \[ \sin^{-1}(\sin x) \geq |x - (a + b + c)| \] Substituting \( a + b + c = 100^\circ \): \[ \sin^{-1}(\sin x) \geq |x - 100^\circ| \] ### Step 8: Analyze \( \sin^{-1}(\sin x) \) The function \( \sin^{-1}(\sin x) \) returns \( x \) when \( x \) is in the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \) and adjusts to keep the output in that range otherwise. ### Step 9: Determine the Range for \( x \) To satisfy the inequality, we need to consider the ranges: - For \( x \in [0, 180^\circ] \), \( \sin^{-1}(\sin x) = x \). - For \( x \in [180^\circ, 360^\circ] \), \( \sin^{-1}(\sin x) = 180^\circ - x \). ### Step 10: Solve the Inequality We analyze the inequality: 1. For \( x \in [0, 100^\circ] \): \[ x \geq 100^\circ - x \implies 2x \geq 100^\circ \implies x \geq 50^\circ \] 2. For \( x \in [100^\circ, 180^\circ] \): \[ x \geq x - 100^\circ \implies 0 \geq -100^\circ \quad \text{(always true)} \] 3. For \( x \in [180^\circ, 360^\circ] \): \[ 180^\circ - x \geq x - 100^\circ \implies 280^\circ \geq 2x \implies x \leq 140^\circ \] ### Step 11: Combine Results From the analysis: - \( x \) must be in the range \( [50^\circ, 140^\circ] \). ### Step 12: Find the Largest Integer The largest integer \( x \) in the range \( [50, 140] \) is: \[ \boxed{140} \]

To solve the problem step by step, we will follow the logic presented in the video transcript and clarify each step. ### Step 1: Define the Variables Let: - \( a = \cos^{-1}(\cos 20^\circ) \) - \( b = \cos^{-1}(\cos 30^\circ) \) - \( c = \sin^{-1}(\sin(a + b)) \) ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value type|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a + b) then If 5 sec^(-1) x + 10 sin^(-1) y = 10 (a + b + c) then the value of tan^(-1) x + cos^(-1) (y -1) is

If f ( x) = cos^(-1) ( cos ( x + 1) ) " and " g(x) = sin ^(-1) ( sin (x + 2)) , then

cos(a sin ^(-1)"1/x)

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

(sin x)/(1+cos x)

Let cos A + cos B + cos C = 0 and sin A + sin B + sin C = 0 then which of the following statement(s) is/are correct?

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

Let f(x) = sin^(-1)|sin x| + cos^(-1)( cos x) . Which of the following statement(s) is / are TRUE ?

(1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

Let (b cos x)/(2 cos 2x-1)=(b + sin x)/((cos^(2) x-3 sin^(2) x) tan x), b in R . Equation has solutions if

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Linked comprehension type
  1. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  2. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  3. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  4. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  5. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  6. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  7. Consider the system of equations cos^(-1)x + (sin^(-1) y)^(2) = (p pi^...

    Text Solution

    |

  8. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  9. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  10. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  11. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  12. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1], t...

    Text Solution

    |

  13. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  14. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  15. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |

  16. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |