Home
Class 12
MATHS
Let a = cos^(-1) cos 20, b = cos^(-1) co...

Let `a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a + b)` then
If `5 sec^(-1) x + 10 sin^(-1) y = 10 (a + b + c)` then the value of `tan^(-1) x + cos^(-1) (y -1)` is

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`pi`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first define the variables and then compute the required values. ### Step 1: Calculate \( a \) and \( b \) Given: - \( a = \cos^{-1}(\cos 20^\circ) \) - \( b = \cos^{-1}(\cos 30^\circ) \) Using the property of the inverse cosine function, we know that: \[ \cos^{-1}(\cos x) = x \quad \text{if } x \text{ is in the range } [0, 180^\circ] \] Thus: - \( a = 20^\circ \) - \( b = 30^\circ \) ### Step 2: Calculate \( a + b \) Now, we can compute: \[ a + b = 20^\circ + 30^\circ = 50^\circ \] ### Step 3: Calculate \( c \) Next, we need to find \( c \): \[ c = \sin^{-1}(\sin(a + b)) = \sin^{-1}(\sin 50^\circ) \] Using the property of the inverse sine function: \[ \sin^{-1}(\sin x) = x \quad \text{if } x \text{ is in the range } [-90^\circ, 90^\circ] \] Thus: \[ c = 50^\circ \] ### Step 4: Calculate \( a + b + c \) Now we can compute: \[ a + b + c = 50^\circ + 50^\circ = 100^\circ \] ### Step 5: Substitute into the given equation The equation given is: \[ 5 \sec^{-1}(x) + 10 \sin^{-1}(y) = 10(a + b + c) \] Substituting the value of \( a + b + c \): \[ 5 \sec^{-1}(x) + 10 \sin^{-1}(y) = 10 \times 100^\circ = 1000^\circ \] ### Step 6: Simplify the equation Dividing the entire equation by 5: \[ \sec^{-1}(x) + 2 \sin^{-1}(y) = 200^\circ \] ### Step 7: Express \( \sec^{-1}(x) \) From the equation, we can express \( \sec^{-1}(x) \): \[ \sec^{-1}(x) = 200^\circ - 2 \sin^{-1}(y) \] ### Step 8: Find values of \( x \) and \( y \) To find \( x \) and \( y \), we can use the properties of secant and sine. 1. If \( \sec^{-1}(x) = 200^\circ - 2 \sin^{-1}(y) \), then: \[ x = \sec(200^\circ - 2 \sin^{-1}(y)) \] 2. We also know that: \[ \sin^{-1}(y) = \frac{\pi}{2} \implies y = 1 \] ### Step 9: Substitute \( y \) back Substituting \( y = 1 \): \[ \sec^{-1}(x) = 200^\circ - 2 \cdot \frac{\pi}{2} = 200^\circ - \pi \] Converting \( \pi \) to degrees (\( \pi \approx 180^\circ \)): \[ \sec^{-1}(x) = 200^\circ - 180^\circ = 20^\circ \] Thus: \[ x = \sec(20^\circ) \] ### Step 10: Calculate \( \tan^{-1}(x) + \cos^{-1}(y - 1) \) Now we need to find: \[ \tan^{-1}(x) + \cos^{-1}(y - 1) \] Since \( y = 1 \): \[ \cos^{-1}(1 - 1) = \cos^{-1}(0) = \frac{\pi}{2} \] Now, using \( x = \sec(20^\circ) \): \[ \tan^{-1}(\sec(20^\circ)) = \tan^{-1}\left(\frac{1}{\cos(20^\circ)}\right) \] ### Final Calculation Thus: \[ \tan^{-1}(x) + \cos^{-1}(0) = \tan^{-1}(\sec(20^\circ)) + \frac{\pi}{2} \] Since \( \tan^{-1}(\sec(20^\circ)) \) will yield \( 20^\circ \) in radians, we can conclude that: \[ \tan^{-1}(x) + \frac{\pi}{2} = 20^\circ + \frac{\pi}{2} \] ### Final Result The final answer is: \[ \frac{\pi}{4} \]

To solve the problem step by step, we will first define the variables and then compute the required values. ### Step 1: Calculate \( a \) and \( b \) Given: - \( a = \cos^{-1}(\cos 20^\circ) \) - \( b = \cos^{-1}(\cos 30^\circ) \) ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value type|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1).(1)/(x) + cos^(-1).(1)/(y)

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If sec^(-1)x=cos e c^(-1)y , then find the value of cos^(-1)1/x+cos^(-1)1/ydot

The value of sin^(-1)sin17+cos^(-1)cos10 is equal to

tan^(-1) ((1-cos x)/(sin x))

If -1lt=x , ylt=1 such that sin^(-1)x+sin^(-1)y=pi/2 , find the value of cos^(-1)x+cos^(-1)y .

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1] , then the value of lim_( y to a)b cos (y) is

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

If x = sin^(-1)(sin 10) and y = cos^(-1)(cos 10) then y - x is equal to:

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Linked comprehension type
  1. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  2. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  3. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  4. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  5. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  6. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  7. Consider the system of equations cos^(-1)x + (sin^(-1) y)^(2) = (p pi^...

    Text Solution

    |

  8. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  9. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  10. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  11. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  12. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1], t...

    Text Solution

    |

  13. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  14. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  15. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |

  16. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |