Home
Class 12
MATHS
Consider the function f(x) = sin^(-1)x, ...

Consider the function `f(x) = sin^(-1)x`, having principal value branch `[(pi)/(2), (3pi)/(2)] and g(x) = cos^(-1)x`, having principal value brach `[0, pi]`
The value of `f(sin 10)` is

A

`10 - 3pi`

B

`10 -2 pi`

C

`10 -(5pi)/(2)`

D

`(7pi)/(2) - 10`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(\sin 10) \) where \( f(x) = \sin^{-1}(x) \) with the principal value branch \([ \frac{\pi}{2}, \frac{3\pi}{2} ]\), we can follow these steps: ### Step 1: Understand the function The function \( f(x) = \sin^{-1}(x) \) is the inverse sine function. The range of this function is typically \([- \frac{\pi}{2}, \frac{\pi}{2}]\), but in this case, we are considering the principal value branch \([ \frac{\pi}{2}, \frac{3\pi}{2} ]\). ### Step 2: Calculate \( \sin 10 \) We need to find \( \sin(10) \). Since \( 10 \) is in degrees, we can convert it to radians: \[ 10^\circ = \frac{10 \pi}{180} = \frac{\pi}{18} \] Now, we can find \( \sin(10^\circ) \). ### Step 3: Find \( f(\sin 10) \) Now we need to evaluate \( f(\sin(10^\circ)) \): \[ f(\sin(10^\circ)) = \sin^{-1}(\sin(10^\circ)) \] Since \( 10^\circ \) is within the range of the standard sine function, we have: \[ f(\sin(10^\circ)) = 10^\circ = \frac{\pi}{18} \] ### Step 4: Adjust for the principal value branch However, since we are considering the principal value branch of \( f(x) \) which is \([ \frac{\pi}{2}, \frac{3\pi}{2} ]\), we need to adjust our result. To do this, we can use the property of the sine function: \[ \sin(180^\circ - x) = \sin(x) \] We can express \( 10^\circ \) in terms of \( 180^\circ \): \[ \sin(10^\circ) = \sin(180^\circ - 10^\circ) = \sin(170^\circ) \] Thus, we can write: \[ f(\sin(10^\circ)) = \pi - \frac{\pi}{18} = \frac{18\pi}{18} - \frac{\pi}{18} = \frac{17\pi}{18} \] ### Final Answer Therefore, the value of \( f(\sin(10)) \) is: \[ \frac{17\pi}{18} \]

To find the value of \( f(\sin 10) \) where \( f(x) = \sin^{-1}(x) \) with the principal value branch \([ \frac{\pi}{2}, \frac{3\pi}{2} ]\), we can follow these steps: ### Step 1: Understand the function The function \( f(x) = \sin^{-1}(x) \) is the inverse sine function. The range of this function is typically \([- \frac{\pi}{2}, \frac{\pi}{2}]\), but in this case, we are considering the principal value branch \([ \frac{\pi}{2}, \frac{3\pi}{2} ]\). ### Step 2: Calculate \( \sin 10 \) We need to find \( \sin(10) \). Since \( 10 \) is in degrees, we can convert it to radians: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value type|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x) = sin^(-1)x , having principal value branch [(pi)/(2), (3pi)/(2)] and g(x) = cos^(-1)x , having principal value brach [0, pi] For sin^(-1) x lt (3pi)/(4) , solution set of x is

The minimum value of f(x)= "sin"x, [(-pi)/(2),(pi)/(2)] is

Function f : [(pi)/(2), (3pi)/(2)] rarr [-1, 1], f(x) = sin x is

The principal values of cos^(-1)(-sin(7pi)/(6)) is

Function f[(1)/(2)pi, (3)/(2)pi] rarr [-1, 1], f(x) = cos x is

Find the principal value of tan^(-1){sin(-pi/2)}

The principal values of cos^(-1)(-sin((7pi)/6)) is

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

The value of int_(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx" , is

The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in (-pi//2,pi//2) , is

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Linked comprehension type
  1. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  2. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  3. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  4. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  5. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  6. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  7. Consider the system of equations cos^(-1)x + (sin^(-1) y)^(2) = (p pi^...

    Text Solution

    |

  8. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  9. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  10. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  11. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  12. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1], t...

    Text Solution

    |

  13. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  14. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  15. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |

  16. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |