The number of real solution of the equation
`sin^(-1) (sum_(i=1)^(oo) x^(i +1) -x sum_(i=1)^(oo) ((x)/(2))^(i))`
`= (pi)/(2) - cos^(-1) (sum_(i=1)^(oo) (-(x)/(2))^(i) - sum_(i=1)^(oo) (-x)^(i))` lying in the interval `(-(1)/(2), (1)/(2))` is ______.
(Here, the inverse trigonometric function `sin^(-1) x and cos^(-1) x` assume values in `[-(pi)/(2), (pi)/(2)] and [0, pi]` respectively)
The number of real solution of the equation
`sin^(-1) (sum_(i=1)^(oo) x^(i +1) -x sum_(i=1)^(oo) ((x)/(2))^(i))`
`= (pi)/(2) - cos^(-1) (sum_(i=1)^(oo) (-(x)/(2))^(i) - sum_(i=1)^(oo) (-x)^(i))` lying in the interval `(-(1)/(2), (1)/(2))` is ______.
(Here, the inverse trigonometric function `sin^(-1) x and cos^(-1) x` assume values in `[-(pi)/(2), (pi)/(2)] and [0, pi]` respectively)
`sin^(-1) (sum_(i=1)^(oo) x^(i +1) -x sum_(i=1)^(oo) ((x)/(2))^(i))`
`= (pi)/(2) - cos^(-1) (sum_(i=1)^(oo) (-(x)/(2))^(i) - sum_(i=1)^(oo) (-x)^(i))` lying in the interval `(-(1)/(2), (1)/(2))` is ______.
(Here, the inverse trigonometric function `sin^(-1) x and cos^(-1) x` assume values in `[-(pi)/(2), (pi)/(2)] and [0, pi]` respectively)
Text Solution
AI Generated Solution
The correct Answer is:
To solve the equation
\[
\sin^{-1} \left( \sum_{i=1}^{\infty} x^{i+1} - x \sum_{i=1}^{\infty} \left( \frac{x}{2} \right)^{i} \right) = \frac{\pi}{2} - \cos^{-1} \left( \sum_{i=1}^{\infty} \left( -\frac{x}{2} \right)^{i} - \sum_{i=1}^{\infty} (-x)^{i} \right)
\]
we will first simplify the series involved.
### Step 1: Simplifying the series
The series can be recognized as geometric series.
1. **For the first series**:
\[
\sum_{i=1}^{\infty} x^{i+1} = x^2 \sum_{i=0}^{\infty} x^i = x^2 \cdot \frac{1}{1-x} \quad \text{(for } |x| < 1\text{)}
\]
2. **For the second series**:
\[
\sum_{i=1}^{\infty} \left( \frac{x}{2} \right)^{i} = \frac{\frac{x}{2}}{1 - \frac{x}{2}} = \frac{x/2}{1 - x/2} = \frac{x}{2 - x} \quad \text{(for } |x| < 2\text{)}
\]
3. **For the third series**:
\[
\sum_{i=1}^{\infty} \left( -\frac{x}{2} \right)^{i} = \frac{-\frac{x}{2}}{1 + \frac{x}{2}} = \frac{-x/2}{1 + x/2} = \frac{-x}{2 + x} \quad \text{(for } |x| < 2\text{)}
\]
4. **For the fourth series**:
\[
\sum_{i=1}^{\infty} (-x)^{i} = \frac{-x}{1 + x} \quad \text{(for } |x| < 1\text{)}
\]
### Step 2: Substitute back into the equation
Now substituting these into the original equation gives:
\[
\sin^{-1} \left( \frac{x^2}{1-x} - x \cdot \frac{x}{2-x} \right) = \frac{\pi}{2} - \cos^{-1} \left( \frac{-x}{2+x} - \frac{-x}{1+x} \right)
\]
### Step 3: Simplifying the left-hand side
The left-hand side simplifies to:
\[
\frac{x^2}{1-x} - \frac{x^2}{2-x} = \frac{x^2(2-x) - x^2(1-x)}{(1-x)(2-x)} = \frac{x^2(2-x - 1 + x)}{(1-x)(2-x)} = \frac{x^2}{(1-x)(2-x)}
\]
### Step 4: Simplifying the right-hand side
The right-hand side simplifies to:
\[
\frac{-x(1+x) + x(2+x)}{(2+x)(1+x)} = \frac{-x + 2x + x^2}{(2+x)(1+x)} = \frac{x + x^2}{(2+x)(1+x)}
\]
### Step 5: Setting the equations equal
Now we have:
\[
\sin^{-1} \left( \frac{x^2}{(1-x)(2-x)} \right) = \frac{\pi}{2} - \cos^{-1} \left( \frac{x + x^2}{(2+x)(1+x)} \right)
\]
Using the identity \(\sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2}\), we can equate the arguments:
\[
\frac{x^2}{(1-x)(2-x)} = \frac{x + x^2}{(2+x)(1+x)}
\]
### Step 6: Cross-multiplying and simplifying
Cross-multiplying gives:
\[
x^2(2+x)(1+x) = (x + x^2)(1-x)(2-x)
\]
Expanding both sides and simplifying will lead to a polynomial equation.
### Step 7: Finding the roots
After simplifying, we will find a cubic polynomial. We can check the number of real roots using the derivative and the Intermediate Value Theorem.
### Step 8: Conclusion
After analyzing the cubic polynomial, we can conclude that there are 2 real solutions in the interval \((-1/2, 1/2)\).
To solve the equation
\[
\sin^{-1} \left( \sum_{i=1}^{\infty} x^{i+1} - x \sum_{i=1}^{\infty} \left( \frac{x}{2} \right)^{i} \right) = \frac{\pi}{2} - \cos^{-1} \left( \sum_{i=1}^{\infty} \left( -\frac{x}{2} \right)^{i} - \sum_{i=1}^{\infty} (-x)^{i} \right)
\]
we will first simplify the series involved.
...
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
If sum_(r=1)^(oo)(1)/((2r-1)^(2))=(pi^(2))/(8) , then sum_(r=1)^(oo) (1)/(r^(2)) is equal to
The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2
If sum_(i=1)^(7) i^(2)x_(i) = 1 and sum_(i=1)^(7)(i+1)^(2) x_(i) = 12 and sum_(i=1)^(7)(i+2)^(2)x_(i) = 123 then find the value of sum_(i=1)^(7)(i+3)^(2)x_(i)"____"
sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (where |a| gt 1 )
p=sum_(n=0)^(oo) (x^(3n))/((3n)!) , q=sum_(n=1)^(oo) (x^(3n-2))/((3n-2)!), r = sum_(n=1)^(oo) (x^(3n-1))/((3n-1)!) then p + q + r =
If n= 10, sum_(i=1)^(10) x_(i) = 60 and sum_(i=1)^(10) x_(i)^(2) = 1000 then find s.d.
Find the value of 3sum_(n=1)^(oo) {1/(pi) sum_(k=1)^(oo) cot^(-1)(1+2sqrt(sum_(r=1)^(k)r^(3)))}^(n)
If function f(x) = (1+2x) has the domain (-(pi)/(2), (pi)/(2)) and co-domain (-oo, oo) then function is
The mean deviation for n observations x_(1),x_(2)…….x_(n) from their median M is given by (i) sum_(i=1)^(n)(x_(i)-M) (ii) (1)/(n)sum_(i=1)^(n)|x_(i)-M| (iii) (1)/(n)sum_(i=1)^(n)(x_(i)-M)^(2) (iv) (1)/(n)sum_(i=1)^(n)(x_(i)-M)
The sum of all the solution in [0,4pi] of the equation tanx+cotx+1=cos(x+pi/4)i s (a) 3pi (b) pi/2 (c) (7pi)/2 (d) 4pi