Home
Class 12
MATHS
If DeltaABC having vertices A(acostheta1...

If `DeltaABC` having vertices `A(acostheta_1, asintheta_1), B(acostheta_2, asintheta_2), and C(acostheta_3, asintheta_3)` are equilateral triangle, then prove that `cos theta_1 + costheta_2 + cos theta_3 =0 and sintheta_1 + sintheta_2 + sintheta_3 =0`

Text Solution

Verified by Experts

The distance of given vertices` A(acostheta_1,a sintheta_1), B(acostheta_2,a sintheta_2)`, and `C(acostheta_3,a sintheta_3)` from the origin (0,0) is a .
Hence, the circumcenter of the triangle is (1,0). Also,in an equilateral triangle, the controid coincides with the circumcenter. We have `(acostheta-1+acostheta_2+acostheta_3)/(3)=0`
`(asintheta-1+asintheta_2+asintheta_3)/(3)=0`
or `costheta_1+costheta_2+costheta_3=sintheta_1+sintheta_2+sintheta=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.32|1 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.33|1 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.30|1 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If A B C having vertices A(acostheta_1,asintheta_1),B(acostheta_2asintheta_2),a n dC(acostheta_3,asintheta_3) is equilateral, then prove that costheta_1+costheta_2+costheta_3=sintheta_1+sintheta_2+sintheta_3=0.

If (acostheta_1,asintheta_1),(acostheta_2,asintheta_2) and (acostheta_3,asintheta_3) represent the vertices of an equilateral triangle inscribed in a circle, then (a) costheta_1+costheta_2+costheta_3=0 (b) sintheta_1+sintheta_2+sintheta_3=0 (c) tantheta_1+tantheta_2+tantheta_3=0 (d) cottheta_1+cottheta_2+cottheta_3=0

If (a costheta_1,asintheta_1),(acostheta_2,a sintheta_2) , and (acostheta_3a sintheta_3) represent the vertces of an equilateral triangle inscribed in a circle. Then.

If sin theta_1 + sintheta_2 + sin theta_3 = 3 then find the value of cos theta_1 + cos theta_2 + cos theta_3.

if 3 cos theta - 5 sintheta = 3 then prove that 3sintheta+ 5costheta = 5

If sintheta_1+sintheta_2+sintheta_3=3," then "costheta_1+costheta_2+costheta_3 is equal to

If (a cos theta_(1), a sin theta_(1)), ( a cos theta_(2), a sin theta_(2)), (a costheta_(3), a sin theta_(3)) represents the vertices of an equilateral triangle inscribed in x^(2) + y^(2) = a^(2) , then

If cos theta-4sintheta=1, the sintheta+4costheta=

If sintheta+sin^2theta=1 , prove that cos^2theta+cos^4theta=1

Prove that (cos theta-sintheta)/(cos theta+sintheta)=sec 2 theta-tan 2theta .