Home
Class 12
MATHS
If the coordinates of a variable point P...

If the coordinates of a variable point `P` are `(acostheta,bsintheta),` where `theta` is a variable quantity, then find the locus of `Pdot`

Text Solution

AI Generated Solution

To find the locus of the point \( P \) with coordinates \( (a \cos \theta, b \sin \theta) \), we can follow these steps: ### Step 1: Set up the coordinates Let the coordinates of point \( P \) be given as: \[ P = (x, y) = (a \cos \theta, b \sin \theta) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.65|1 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.66|1 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.63|1 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is

If the coordinates of a vartiable point P be (t+(1)/(t), t-(1)/(t)) , where t is the variable quantity, then the locus of P is

Find the locus of a variable point (at^2, 2at) where t is the parameter.

Locus of the point (cos theta +sin theta, cos theta - sin theta) where theta is parameter is

A (2, 3) is a fixed point and Q(3 cos theta, 2 sin theta) a variable point. If P divides AQ internally in the ratio 3:1, find the locus of P.

If the intercepts of the variable circle on the x- and yl-axis are 2 units and 4 units, respectively, then find the locus of the center of the variable circle.

If the intercepts of the variable circle on the x- and y-axis are 2 units and 4 units, respectively, then find the locus of the center of the variable circle.

If the chord of contact of tangents from a point P to the parabola y^2=4a x touches the parabola x^2=4b y , then find the locus of Pdot

If the chord of contact of tangents from a point P to the parabola y^2=4a x touches the parabola x^2=4b y , then find the locus of Pdot

Vertices of a variable triangle are (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R . Locus of its orthocentre is