Home
Class 12
MATHS
Check how the points A,B and C are situa...

Check how the points A,B and C are situated where `A(4,0),B(-1,-1),C(3,5)` .

Text Solution

AI Generated Solution

The correct Answer is:
To determine how the points A(4,0), B(-1,-1), and C(3,5) are situated, we will calculate the distances between each pair of points using the distance formula. ### Step-by-Step Solution 1. **Identify the Points**: - A(4, 0) - B(-1, -1) - C(3, 5) 2. **Distance Formula**: The distance \( D \) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by: \[ D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \] 3. **Calculate Distance AB**: - Using points A(4, 0) and B(-1, -1): \[ AB = \sqrt{(4 - (-1))^2 + (0 - (-1))^2} \] \[ = \sqrt{(4 + 1)^2 + (0 + 1)^2} \] \[ = \sqrt{5^2 + 1^2} = \sqrt{25 + 1} = \sqrt{26} \] 4. **Calculate Distance BC**: - Using points B(-1, -1) and C(3, 5): \[ BC = \sqrt{(-1 - 3)^2 + (-1 - 5)^2} \] \[ = \sqrt{(-4)^2 + (-6)^2} \] \[ = \sqrt{16 + 36} = \sqrt{52} \] 5. **Calculate Distance AC**: - Using points A(4, 0) and C(3, 5): \[ AC = \sqrt{(4 - 3)^2 + (0 - 5)^2} \] \[ = \sqrt{(1)^2 + (-5)^2} \] \[ = \sqrt{1 + 25} = \sqrt{26} \] 6. **Summarize the Distances**: - \( AB = \sqrt{26} \) - \( BC = \sqrt{52} \) - \( AC = \sqrt{26} \) 7. **Check the Triangle Inequality**: - For points A, B, and C to form a triangle, the sum of the lengths of any two sides must be greater than the length of the third side. - Check: - \( AB + AC > BC \) \[ \sqrt{26} + \sqrt{26} > \sqrt{52} \] \[ 2\sqrt{26} > \sqrt{52} \] - Since \( \sqrt{52} = \sqrt{4 \times 13} = 2\sqrt{13} \), we need to check if \( 2\sqrt{26} > 2\sqrt{13} \), which simplifies to \( \sqrt{26} > \sqrt{13} \). This is true since \( 26 > 13 \). 8. **Conclusion**: - Since \( AB = AC \) and \( AB + AC > BC \), the triangle formed by points A, B, and C is an **Isosceles Triangle**.

To determine how the points A(4,0), B(-1,-1), and C(3,5) are situated, we will calculate the distances between each pair of points using the distance formula. ### Step-by-Step Solution 1. **Identify the Points**: - A(4, 0) - B(-1, -1) - C(3, 5) ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.3|10 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.4|8 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.1|6 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to the plane A B C , where the coordinates of A ,B and C are A(3,-1,2),B(1,-1,-3) and C(4,-3,1)dot

Find a unit vector perpendicular to the plane A B C , where the coordinates of A ,B and C are A(3,-1,2),B(1,-1,-3) and C(4,-3,1)dot

If the volume of tetrahedron A B C D is 1 cubic units, where A(0,1,2),B(-1,2,1) and C(1,2,1), then the locus of point D is a. x+y-z=3 b. y+z=6 c. y+z=0 d. y+z=-3

The area of the quadrilateral ABCD where A (0,4,1) , B(2,3,-1), c (4,5,0)and D(2,6,2) is to :

Find the length of altitude through A of the triangle A B C , where A-=(-3,0)B-=(4,-1),C-=(5,2)

Find the length of altitude through A of the triangle A B C , where A-=(-3,0)B-=(4,-1),C-=(5,2)

Find the vector equation of a plane passing through three points A(0, 0, 2), B(1, -1, 1), C(3, 4, 5) .

The coordinates of the point P dividing the line segment joining the points A(1,\ 3) and B(4,\ 6) in the ratio 2\ :1 are (2,\ 4) (b) (3,\ 5) (c) (4,\ 2) (d) (5,\ 3)

Write the additive inverse of matrices A,B, and C where A=[6,-5], B=[{:(,-2,0),(,4,-1):}] and C=[{:(,-7),(,4):}]

The co-ordinates of A, B, C are respectively (-4, 0), (0, 2) and (-3, 2). Check whether points are collinear.