Home
Class 12
MATHS
If the point x1+t(x2-x1),y1+t(y2-y1) div...

If the point `x_1+t(x_2-x_1),y_1+t(y_2-y_1)` divides the join of `(x_1,y_1)` and `(x_2,y_2)` internally in ratio of `t:1` then vlaue of `t` is

A

`t lt 0`

B

`0 lt t lt 1`

C

`t gt 1`

D

`t=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( t \) given that the point \( (x_1 + t(x_2 - x_1), y_1 + t(y_2 - y_1)) \) divides the line segment joining the points \( (x_1, y_1) \) and \( (x_2, y_2) \) internally in the ratio \( t:1 \). ### Step-by-Step Solution: 1. **Understanding the Section Formula**: The coordinates of a point \( P \) that divides the line segment joining points \( A(x_1, y_1) \) and \( B(x_2, y_2) \) in the ratio \( m:n \) are given by: \[ P\left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right) \] In our case, \( m = t \) and \( n = 1 \). 2. **Applying the Section Formula**: Using the section formula, the coordinates of point \( P \) can be expressed as: \[ P\left( \frac{tx_2 + x_1}{t + 1}, \frac{ty_2 + y_1}{t + 1} \right) \] 3. **Equating Coordinates**: We know that the coordinates of point \( P \) are also given as \( (x_1 + t(x_2 - x_1), y_1 + t(y_2 - y_1)) \). Therefore, we can set up the following equations: \[ \frac{tx_2 + x_1}{t + 1} = x_1 + t(x_2 - x_1) \] \[ \frac{ty_2 + y_1}{t + 1} = y_1 + t(y_2 - y_1) \] 4. **Solving the x-coordinate Equation**: Let's solve the first equation: \[ \frac{tx_2 + x_1}{t + 1} = x_1 + t(x_2 - x_1) \] Cross-multiplying gives: \[ tx_2 + x_1 = (x_1 + t(x_2 - x_1))(t + 1) \] Expanding the right-hand side: \[ tx_2 + x_1 = x_1(t + 1) + t(x_2 - x_1)(t + 1) \] Simplifying further: \[ tx_2 + x_1 = tx_1 + x_1 + t^2(x_2 - x_1) + t(x_2 - x_1) \] Cancel \( x_1 \) from both sides: \[ tx_2 = tx_1 + t^2(x_2 - x_1) + t(x_2 - x_1) \] 5. **Rearranging the Equation**: Rearranging gives: \[ tx_2 - tx_1 = t^2(x_2 - x_1) + t(x_2 - x_1) \] Factoring out \( t \): \[ t(x_2 - x_1) = t(x_2 - x_1)(t + 1) \] 6. **Dividing Both Sides**: If \( x_2 \neq x_1 \), we can divide both sides by \( (x_2 - x_1) \): \[ t = t(t + 1) \] 7. **Setting Up the Quadratic Equation**: Rearranging gives: \[ t^2 + t - t = 0 \implies t^2 = 0 \] 8. **Finding the Value of t**: Thus, we find: \[ t = 0 \] ### Final Answer: The value of \( t \) is \( 0 \).

To solve the problem, we need to find the value of \( t \) given that the point \( (x_1 + t(x_2 - x_1), y_1 + t(y_2 - y_1)) \) divides the line segment joining the points \( (x_1, y_1) \) and \( (x_2, y_2) \) internally in the ratio \( t:1 \). ### Step-by-Step Solution: 1. **Understanding the Section Formula**: The coordinates of a point \( P \) that divides the line segment joining points \( A(x_1, y_1) \) and \( B(x_2, y_2) \) in the ratio \( m:n \) are given by: \[ P\left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right) ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Multiple correct|13 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Linked|10 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.6|9 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If the point (x_1+t(x_2-x_1),y_1+t(y_2-y_1)) divides the join of (x_1,y_1) and (x_2, y_2) internally, then t 1 (d) t=1

If the line joining the points (_x_1, y_1) and (x_2, y_2) subtends a right angle at the point (1,1), then x_1 + x_2 + y_2 + y_2 is equal to

If theta\ is the angle which the straight line joining the points (x_1, y_1)a n d\ (x_2, y_2) subtends at the origin, prove that tantheta=(x_2y_1-x_1y_2)/(x_1x_2+y_1y_2)\ a n dcostheta=(x_1x_2+y_1y_2)/(sqrt(x1 2 x2 2+y2 2x1 2+y1 2x2 2+ y1 2y2 2))

If the lines (x-1)/2=(y+1)/3=z/(5t-1) and (x+1)/(2s+1)=y/2=z/4 are parallel to each other, then value of s, t will be

If t_(1),t_(2),t_(3) are the feet of normals drawn from (x_(1),y_(1)) to the parabola y^(2)=4ax then the value of t_(1)t_(2)t_(3) =

If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is equal to

Three points A(x_1 , y_1), B (x_2, y_2) and C(x, y) are collinear. Prove that: (x-x_1) (y_2 - y_1) = (x_2 - x_1) (y-y_1) .

Tangent are drawn from two points (x_1, y_1) and (x_2, y_2) to xy = c^2 . The conic passing through the two points and through the four points of contact will be circle if (A) x_1 x_2 = y_1 y_2 (B) x_1 y_2 = x_2 y_1 (C) x_1 y_2 + x_2 y_1 = 4c^2 (D) x_1 x_1 + y_1 y_2 = 4c^2

If the image of the point (x_1, y_1) with respect to the mirror ax+by+c=0 be (x_2 , y_2) then. (a) (x_2-x_1)/a = (a x_1 + b y_1+ c)/(a^(2)+b^(2)) (b) (x_2-x_1)/a = (y_2 - y_1)/b (c) (x_2-x_1)/a = -2 ((a x_1 + b y_1+ c)/(a^(2)+b^(2))) (d) None of these

If the tangents and normals at the extremities of a focal chord of a parabola intersect at (x_1,y_1) and (x_2,y_2), respectively, then (a) x_1=y_2 (b) x_1=y_1 (c) y_1=y_2 (d) x_2=y_1

CENGAGE ENGLISH-COORDINATE SYSYEM -Exercises
  1. Let A-=(3,-4),B-=(1,2)dot Let P-=(2k-1,2k+1) be a variable point such ...

    Text Solution

    |

  2. The polar coordinates equivalent to (-3,sqrt3) are

    Text Solution

    |

  3. If the point x1+t(x2-x1),y1+t(y2-y1) divides the join of (x1,y1) and (...

    Text Solution

    |

  4. P and Q are points on the line joining A(-2,5) and B(3,1) such that A ...

    Text Solution

    |

  5. In triangle ABC, angle B is right angled, AC=2 and A(2,2), B(1,3) then...

    Text Solution

    |

  6. One vertex of an equilateral triangle is (2,2) and its centroid is (-2...

    Text Solution

    |

  7. ABCD is a rectangle with A(-1,2),B(3,7) and AB:BC=4:3. If P is the cen...

    Text Solution

    |

  8. If (2,-3), (6,-5) and (-2,1) are three consecutive verticies of a rohm...

    Text Solution

    |

  9. If poitns A(3,5) and B are equidistant from H(sqrt2,sqrt5) and B has r...

    Text Solution

    |

  10. Le n be the number of points having rational coordinates equidistant ...

    Text Solution

    |

  11. In a triangle ABC the sides BC=5, CA=4 and AB=3. If A(0,0) and the int...

    Text Solution

    |

  12. If A(0, 0), B(1, 0) and C(1/2,sqrt(3)/2) then the centre of the circle...

    Text Solution

    |

  13. Statement 1: If in a triangle, orthocentre, circumcentre and centroid ...

    Text Solution

    |

  14. Consider three points P = (-sin (beta-alpha), -cos beta), Q = (cos(bet...

    Text Solution

    |

  15. If two vertices of a triangle are (-2,3) and (5,-1) the orthocentre li...

    Text Solution

    |

  16. The vertices of a triangle are (p q ,1/(p q)),(p q)),(q r ,1/(q r)), a...

    Text Solution

    |

  17. If the vertices of a triangle are (sqrt(5,)0) , (sqrt(3),sqrt(2)) , an...

    Text Solution

    |

  18. Two vertices of a triangle are (4,-3) & (-2, 5). If the orthocentre o...

    Text Solution

    |

  19. In Delta ABC if the orthocentre is (1,2) and the circumcenter is (0,0)...

    Text Solution

    |

  20. A triangle A B C with vertices A(-1,0),B(-2,3/4), and C(-3,-7/6) has i...

    Text Solution

    |