Home
Class 12
MATHS
Vertices of a variable triangle are (3,4...

Vertices of a variable triangle are `(3,4); (5costheta, 5sintheta)` and `(5sintheta,-5costheta)` where `theta` is a parameter then the locus of its orthocentre is a. `(x+y-1)^2+(x-y-7)^2=100` b. `(x+y-7)^2+(x-y-1)^2=100` c. `(x+y-7)^2+(x+y-1)^2=100` d. `(x+y-7)^2+(x-y+1)^2=100`

A

`(x+y-1)^2+(x-y-7)^2=100`

B

`(x+y-7)^2+(x-y-1)^2=100`

C

`(x+y-7)^2+(x+y-1)^2=100`

D

`(x+y-7)^2+(x-y+1)^2=100`

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the orthocenter of the triangle with vertices \( A(3,4) \), \( B(5\cos\theta, 5\sin\theta) \), and \( C(5\sin\theta, -5\cos\theta) \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Coordinates of the Vertices:** - Vertex \( A \) is \( (3, 4) \) - Vertex \( B \) is \( (5\cos\theta, 5\sin\theta) \) - Vertex \( C \) is \( (5\sin\theta, -5\cos\theta) \) 2. **Calculate the Centroid \( G \) of the Triangle:** The centroid \( G \) is given by the formula: \[ G\left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \] Substituting the coordinates: \[ G\left( \frac{3 + 5\cos\theta + 5\sin\theta}{3}, \frac{4 + 5\sin\theta - 5\cos\theta}{3} \right) \] 3. **Express the Orthocenter \( H \):** The orthocenter \( H \) of the triangle can be expressed in terms of the centroid \( G \) and the circumcenter \( O \). The circumcenter \( O \) is at the origin \( (0, 0) \). The centroid divides the line segment joining the orthocenter and circumcenter in the ratio \( 2:1 \). Let the coordinates of the orthocenter be \( H(h, k) \). Then: \[ G\left( \frac{h + 0}{3}, \frac{k + 0}{3} \right) = \left( \frac{h}{3}, \frac{k}{3} \right) \] 4. **Set Up the Equations:** From the coordinates of the centroid: - For the x-coordinate: \[ \frac{h}{3} = \frac{3 + 5\cos\theta + 5\sin\theta}{3} \implies h = 3 + 5\cos\theta + 5\sin\theta \] - For the y-coordinate: \[ \frac{k}{3} = \frac{4 + 5\sin\theta - 5\cos\theta}{3} \implies k = 4 + 5\sin\theta - 5\cos\theta \] 5. **Express \( \sin\theta \) and \( \cos\theta \):** Rearranging the equations: - From \( h \): \[ h - 3 = 5(\cos\theta + \sin\theta) \implies \cos\theta + \sin\theta = \frac{h - 3}{5} \] - From \( k \): \[ k - 4 = 5(\sin\theta - \cos\theta) \implies \sin\theta - \cos\theta = \frac{k - 4}{5} \] 6. **Add and Subtract the Equations:** - Adding: \[ \left( \frac{h - 3}{5} + \frac{k - 4}{5} \right) = 2\sin\theta \implies h + k - 7 = 10\sin\theta \] - Subtracting: \[ \left( \frac{h - 3}{5} - \frac{k - 4}{5} \right) = 2\cos\theta \implies h - k + 1 = 10\cos\theta \] 7. **Square and Add the Results:** Using the identity \( \sin^2\theta + \cos^2\theta = 1 \): \[ \left( \frac{h + k - 7}{10} \right)^2 + \left( \frac{h - k + 1}{10} \right)^2 = 1 \] Multiplying through by \( 100 \): \[ (h + k - 7)^2 + (h - k + 1)^2 = 100 \] 8. **Substituting \( h \) and \( k \) with \( x \) and \( y \):** Let \( h = x \) and \( k = y \): \[ (x + y - 7)^2 + (x - y + 1)^2 = 100 \] ### Final Answer: Thus, the locus of the orthocenter is given by: \[ (x + y - 7)^2 + (x - y + 1)^2 = 100 \]

To find the locus of the orthocenter of the triangle with vertices \( A(3,4) \), \( B(5\cos\theta, 5\sin\theta) \), and \( C(5\sin\theta, -5\cos\theta) \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Coordinates of the Vertices:** - Vertex \( A \) is \( (3, 4) \) - Vertex \( B \) is \( (5\cos\theta, 5\sin\theta) \) - Vertex \( C \) is \( (5\sin\theta, -5\cos\theta) \) ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Multiple correct|13 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Linked|10 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.6|9 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If 2costheta-sintheta=x and costheta-3sintheta=ydot Prove that 2x^2+y^2-2x y=5.

A B C is a variable triangle such that A is (1,2) and B and C lie on line y=x+lambda (where lambda is a variable). Then the locus of the orthocentre of triangle A B C is (a) (x-1)^2+y^2=4 (b) x+y=3 (c) 2x-y=0 (d) none of these

ABC is a variable triangle such that A is (1, 2), and B and C on the line y=x+lambda(lambda is a variable). Then the locus of the orthocentre of DeltaA B C is (a) x+y=0 (b) x-y=0 x^2+y^2=4 (d) x+y=3

The length of major ofthe ellipse (5x-10)^2 +(5y+15)^2 = 1/4(3x-4y+7)^2 is

If x/a costheta+y/b sintheta=1 and x/a sintheta-y/bcostheta=1 Prove that : (x^2)/(a^2)+(y^2)/(b^2)=2

Eliminate theta in the following (i) 2sintheta=x, 3costheta=y (ii) costheta + sintheta=x, costheta-sintheta=y

A B C is a variable triangle such that A is (1, 2), and Ba n dC on the line y=x+lambda(lambda is a variable). Then the locus of the orthocentre of "triangle"A B C is x+y=0 (b) x-y=0 x^2+y^2=4 (d) x+y=3

If cottheta+tantheta=x and sectheta-costheta=y then (i) sintheta costheta=-x (ii) sintheta tantheta=-y (iii) (x^2y)^(2/3)-(xy^2)^(2/3)=1 (iv) (x^2y)^(1/3)+(xy^2)^(1/3)=1

If x=a(theta+sintheta) , y=a(1+costheta) , prove that (d^2y)/(dx^2)=-a/(y^2) .

If x=a(theta+sintheta),y=a(1+costheta), Prove that (d^2y)/(dx^2)=-a/(y^2)

CENGAGE ENGLISH-COORDINATE SYSYEM -Exercises
  1. Point A and B are in the first quadrant,point O is the origin. If the ...

    Text Solution

    |

  2. Let a,b,c be in A.P and x,y,z be in G.P.. Then the points (a,x),(b,y) ...

    Text Solution

    |

  3. If sum(i-1)^4(x1^2+y 1^2)lt=2x1x3+2x2x4+2y2y3+2y1y4, the points (x1, y...

    Text Solution

    |

  4. The vertices A and D of square A B C D lie on the positive sides of x-...

    Text Solution

    |

  5. Through the point P(alpha,beta) , where alphabeta>0, the straight line...

    Text Solution

    |

  6. The locus of the moving point whose coordinates are given by (e^t+e^(-...

    Text Solution

    |

  7. The locus of a point represent by x=(a)/(2)((t+1)/(t)),y=(a)/(2)((t-...

    Text Solution

    |

  8. Vertices of a variable triangle are (3,4); (5costheta, 5sintheta) and ...

    Text Solution

    |

  9. Vertices of a variable triangle are (3,4); (5costheta, 5sintheta) and ...

    Text Solution

    |

  10. From a point, P perpendicular PM and PN are drawn to x and y axes, res...

    Text Solution

    |

  11. The locus of point of intersection of the lines y+mx=sqrt(a^2m^2+b^2) ...

    Text Solution

    |

  12. If the roots of the equation (x(1)^(2)-a^2)m^2-2x1y1m+y(1)^(2)+b^2=0...

    Text Solution

    |

  13. Through point P(-1,4), two perpendicular lines are drawn which interse...

    Text Solution

    |

  14. The number of integral points (x,y) (i.e, x and y both are integers) w...

    Text Solution

    |

  15. The foot of the perpendicular on the line 3x+y=lambda drawn from the o...

    Text Solution

    |

  16. The image of P(a,b) on the line y=-x is Q and the image of Q on the li...

    Text Solution

    |

  17. If the equation of the locus of a point equidistant from the points (a...

    Text Solution

    |

  18. Consider three lines as follows. L1:5x-y+4=0 L2:3x-y+5=0 L3: x+y+8=0...

    Text Solution

    |

  19. Consider a point A(m,n) , where m and n are positve intergers. B is th...

    Text Solution

    |

  20. In the given figure, OABC is a rectangle. Slope of OB is a. 1//4 b....

    Text Solution

    |