Home
Class 12
MATHS
Find the following sum: 1/(n !)+1/(2!(n-...

Find the following sum: `1/(n !)+1/(2!(n-2)!)+1/(4!(n-4)!)+. . . .`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \[ S = \frac{1}{n!} + \frac{1}{2!(n-2)!} + \frac{1}{4!(n-4)!} + \ldots \] we can follow these steps: ### Step 1: Rewrite the terms We can express the terms in a more manageable form. Notice that each term can be rewritten as: \[ \frac{1}{k!(n-k)!} \] for \( k = 0, 2, 4, \ldots \). Thus, we can rewrite our sum as: \[ S = \sum_{k=0, k \text{ even}}^{n} \frac{1}{k!(n-k)!} \] ### Step 2: Multiply and divide by \( n! \) To facilitate the computation, we multiply and divide the entire sum by \( n! \): \[ S = \frac{1}{n!} \left( n! + \frac{n!}{2!(n-2)!} + \frac{n!}{4!(n-4)!} + \ldots \right) \] ### Step 3: Recognize the binomial coefficients The terms inside the parentheses can be recognized as binomial coefficients: \[ S = \frac{1}{n!} \left( \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \ldots \right) \] ### Step 4: Use the binomial theorem The sum of the coefficients in the binomial expansion of \( (1 + 1)^n \) gives us \( 2^n \). However, since we are only summing the coefficients for even indices, we can use the identity: \[ \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \ldots = \frac{1}{2} \cdot 2^n = 2^{n-1} \] ### Step 5: Substitute back into the equation Now substituting this back into our expression for \( S \): \[ S = \frac{1}{n!} \cdot 2^{n-1} \] ### Final Result Thus, the required sum is: \[ S = \frac{2^{n-1}}{n!} \]

To find the sum \[ S = \frac{1}{n!} + \frac{1}{2!(n-2)!} + \frac{1}{4!(n-4)!} + \ldots \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.3|7 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: sum_(n=1)^(11)(2+3^n)

Evaluate the following: sum_(n=2)^(10)4^n

Find the sum of the following series : (1)/(4) + (1)/(2) + 1 + … to n terms

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

If (n !)/(2!(n-2)!) and (n !)/(4!(n-4)!) are in the ratio 2:1 , find the value of ndot

Find the sum: sum_(n=1)^(10){(1/2)^(n-1)+(1/5)^(n+1)}dot

Find the sum of the following series to n term: 1. 2. 4+2. 3. 7+3. 4. 10+ .......

If (n!)/( 2!( n-2) !) and (eta !)/( 4!(n-4)!) are in the ratio 2: 1 , find the value of n.

Evaluate the following limit: (lim)_(n->oo)(1^3+2^3+ n^3)/((n-1)^4)

Find the sum of the series: 1. n+2.(n-1)+3.(n-2)++(n-1). 2+n .1.