Home
Class 12
MATHS
Find the sum sum(j=0)^n( ^(4n+1)Cj+^(4n+...

Find the sum `sum_(j=0)^n( ^(4n+1)C_j+^(4n+1)C_(2n-j))` .

Text Solution

Verified by Experts

The correct Answer is:
`2^(4n)+.^(4n+1)C_(n)`

`underset(j=0)overset(n)sum(.^(4n+1)C_(j) + .^(4n+1)C_(2n-j))= (.^(4n+1)C_(0) + .^(4n+1)C_(1)+"....." .^(4n+1)C_(n))+(.^(4n+1)C_(2n)+.^(4n+1)C_(2n-1)+"....."+.^(4n+1)C_(n))`
`= (.^(4n+1)C_(0)+.^(4n+1)C_(1)+"...."+.^(4n+1)C_(2n))+.^(4n+1)C_(n)`
` = 2^(4n) + .^(4n+1)C_(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.3|7 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sumsum_(i!=j)^n ^nC_i^n C_j

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

Find the sum sumsum_(0lt=ilt=jlt=n)^n C_i^n C_j

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Find the sum sum_(j=1)^(10)sum_(i=1)^(10)ixx2^(j)

Find the sum sumsum_(0lt=i < jlt=n-1)j^n C_idot

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .