Home
Class 12
MATHS
The remainder when (sum(k=1)^(5) ""^(20)...

The remainder when `(sum_(k=1)^(5) ""^(20)C_(2k-1))^(6)` is divided by 11, is :

Text Solution

Verified by Experts

The correct Answer is:
3

We have `E = (underset(r=1)overset(5)sum.^(20)C_(2r-1))^(6)`
We know that `.^(20)C_(1)+.^(20)C_(3)+.^(20)C_(5)+.^(20)C_(7)+"......"+.^(20)C_(19)=2^(19)`
Now, `.^(20)C_(1)=.^(20)C_(19),.^(20)C_(3)=.^(20)C_(17)"....."`etc.
`:. 2(.^(20)C_(1)+.^(20)C_(3)+"...."+.^(20)C_(9))=2^(19)`
`rArr .^(20)C_(1)+.^(20)C_(3)+"....."+.^(20)C_(9)=2^(18)`
`rArr E = (2^(18))^(6) = 2^(108)`
`= 8(2^(5))^(21)`
`= 8(33-1)^(21)`
`= 8(33k-1)`
`= 8 xx 33k - 8`
`= 11(8xx3k-1)+3`
Therefore, the remainder when `(underset(r=1)overset(5)sum.^(20)C_(2r-1))^(6)` is divided by 11 is 3.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.3|7 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Evaluate sum_(k=0)^(5)k^(2)

Find the sum sum_(k=0)^(10).^(20)C_k .

sum_(k=0)^(5)(-1)^(k)2k

Find the remainder when sum_(r=1)^(n)r! is divided by 15 , if n ge5 .

Find the remainder when x^(6)-4x^(5)+3x^(4)-2x^(2)+x-1 is divided with x+2

Find the sum, sum_(k=1) ^(20) (1+2+3+.....+k)

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

Evaluate sum_(k=1)^(11)(2+3^k)

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

Suppose ,m divided by n , then quotient q and remainder r {:("n)m(q"),(" "-), (" "-), (" "r) , (" "):} or m= nq + r , AA m,n,q, r in 1 and n ne 0 If a is the remainder when 5^(40) us divided by 11 and b is the remainder when 2^(2011) is divided by 17 , the value of a + b is