Home
Class 12
MATHS
Prove that ^n C0+^n C3+^n C6+=1/3(2^n+2...

Prove that `^n C_0+^n C_3+^n C_6+=1/3(2^n+2cos((npi)/3))` .

Text Solution

Verified by Experts

Consider `(1+x)^(n) = .^(n)C_(0) + .^(n)C_(1)+.^(n)C_(2)+.^(n)C_(3)+.^(n)C_(4)+.^(n)C_(5)+.^(n)C_(6)+"....."`
`(1+omega)^(n) = .^(n)C_(0)+.^(n)C_(1)omega+.^(n)C_(2)omega^(2)+.^(n)C_(3)omega^(3)+.^(n)C_(4)omega^(4)+.^(n)C_(5)omega^(5)+.^(n)C_(6)omega^(6)+"......"`
`= .^(n)C_(0)+.^(n)C_(1)omega+.^(n)C_(2)omega^(2)+.^(n)C_(3)+.^(n)C_(4)omega+.^(n)C_(5)omega^(2)+.^(n)C_(6)+"......"`
`(1+omega^(3))^(n)= .^(n)C_(0)+.^(n)C_(1)omega^(2)+.^(n)C_(2)omega^(4)+.^(n)C_(3)omega^(6) +.^(n)C_(4)omega^(8)+.^(n)C_(5)omega^(10)+.^(n)C_(6)omega^(12)+"....."`
`= .^(n)C_(0)+.^(n)C_(1)omega^(2)+.^(n)C_(2)omega+.^(n)C_(3)+.^(n)C_(4)omega^(2)+.^(n)C_(5)omega + .^(n)C_(6)+"..."`
`:. 2^(n) +(1+omega)^(n)+(1+omega^(2))^(n) = 3(.^(n)C_(0)+.^(n)C_(3)+.^(n)C_(6)+".....")`
Now, `2^(n)+(1+omega)^(n)+(1+omega^(2))^(n)=2^(n)+2Re((1+omega)^(n))`
`= 2^(n) +2Re(1/2-i'(sqrt(3))/(2))^(n)`
`= 2^(n)+2Re(cos'(pi)/(3)-isin'(pi)/(3))^(n)`
`= 2^(n)+2cos'(npi)/(3)`
Hence, `.^(n)C_(0)+.^(n)C_(3)+.^(n)C_(6)+"...."=1/3(2^(n)+2cos'(npi)/(3))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.3|7 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that nC_1(nC_2)^2(n C_3)^3.......(n C_n)^n le ((2^n)/(n+1))^((n+1)C_2),AAn in Ndot

Prove that sum_(r = 0)^n r^3 . C_r = n^2 (n +3).2^(n-3)

Prove that 3.C_0 + 6.C_1 + 12.C_2 + ………+3.2^n.C_n = 3^(n+1)