Home
Class 12
MATHS
If (1+x-2x^2)^6=1+a1x+a2x^(2)+.........+...

If `(1+x-2x^2)^6=1+a_1x+a_2x^(2)+.........+a_(12)x^(12),` then find the value of `a_2+a_4+a_6+................+a_(12)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the coefficients of the even powers of \( x \) in the expansion of \( (1 + x - 2x^2)^6 \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + x - 2x^2)^6 \). We want to find the coefficients \( a_2, a_4, a_6, \ldots, a_{12} \) in the expansion. 2. **Substituting \( x = 1 \)**: Substitute \( x = 1 \) into the expression: \[ (1 + 1 - 2 \cdot 1^2)^6 = (1 + 1 - 2)^6 = (0)^6 = 0 \] This gives us: \[ 1 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10} + a_{11} + a_{12} = 0 \quad \text{(Equation 1)} \] 3. **Substituting \( x = -1 \)**: Next, substitute \( x = -1 \): \[ (1 - 1 - 2 \cdot (-1)^2)^6 = (1 - 1 - 2)^6 = (-2)^6 = 64 \] This gives us: \[ 1 - a_1 + a_2 - a_3 + a_4 - a_5 + a_6 - a_7 + a_8 - a_9 + a_{10} - a_{11} + a_{12} = 64 \quad \text{(Equation 2)} \] 4. **Adding Equation 1 and Equation 2**: Now, we add Equation 1 and Equation 2: \[ (0) + (64) = (1 + 1) + (a_2 + a_2) + (a_4 + a_4) + (a_6 + a_6) + (a_8 + a_8) + (a_{10} + a_{10}) + (a_{12} + a_{12}) \] Simplifying this gives: \[ 64 = 2 + 2(a_2 + a_4 + a_6 + a_8 + a_{10} + a_{12}) \] Thus: \[ 64 - 2 = 2(a_2 + a_4 + a_6 + a_8 + a_{10} + a_{12}) \] \[ 62 = 2(a_2 + a_4 + a_6 + a_8 + a_{10} + a_{12}) \] Dividing both sides by 2: \[ 31 = a_2 + a_4 + a_6 + a_8 + a_{10} + a_{12} \] 5. **Final Result**: Therefore, the value of \( a_2 + a_4 + a_6 + \ldots + a_{12} \) is \( \boxed{31} \).

To solve the problem, we need to find the sum of the coefficients of the even powers of \( x \) in the expansion of \( (1 + x - 2x^2)^6 \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + x - 2x^2)^6 \). We want to find the coefficients \( a_2, a_4, a_6, \ldots, a_{12} \) in the expansion. 2. **Substituting \( x = 1 \)**: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.3|7 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If (1+x+x^2)^n = a_0+a_1x+a_2x_2 +..............+a_(2n)x^(2n) then the value of a_1+a_4+a_7+.........

If (1-x+x^2)^n=a_0+a_1x+a_2x^2+ .........+a_(2n)x^(2n),\ find the value of a_0+a_2+a_4+........+a_(2n)dot

If (1+x-2x^2)^(6) = 1 + a_(1) x + a_(2) x^(2) + ... + a_(12) x^(12) , then find a_2+ a_4 + ... + a_12

If (1+x+x^2)^n=a_0+a_1x+a_2x^2++a_(2n)x^(2n), find the value of a_0+a_3+a_6++ ,n in Ndot

If (1+x+x^2)^n=a_0+a_1x+a_2x^2++a_(2n)x_(2n), find the value of a_0+a_6++ ,n in Ndot

If (1+x-2x^2)^(20)=a_0+a_1x+a_2x^2+a_3x^3+...+a_(40)x^(40), then find the value of a_1+a_3+a_5+...+a_(39)dot

If (1+x-2x^2)^(20)=a_0+a_1x+a_2x^2+a_3x^3++a_(40)x^(40), then find the value of a_1+a_3+a_5++a_(39)dot

If (1+x+x^2+x^3)^100=a_0+a_1x+a_2x^2+.......+a_300x^300, then

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :