Home
Class 12
MATHS
Find the sum sum(r=1)^(n) r^(2) (""^(n)C...

Find the sum `sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \( S = \sum_{r=1}^{n} r^2 \frac{nC_r}{nC_{r-1}} \), we can start by rewriting the binomial coefficients involved. ### Step 1: Rewrite the binomial coefficients We know that: \[ nC_r = \frac{n!}{r!(n-r)!} \quad \text{and} \quad nC_{r-1} = \frac{n!}{(r-1)!(n-r+1)!} \] Thus, we can express the ratio: \[ \frac{nC_r}{nC_{r-1}} = \frac{r!(n-r+1)!}{(r-1)!(n-r)!} = \frac{r(n-r+1)}{1} = r(n-r+1) \] ### Step 2: Substitute back into the sum Now substituting this back into our sum, we have: \[ S = \sum_{r=1}^{n} r^2 \cdot r(n-r+1) = \sum_{r=1}^{n} r^3(n-r+1) \] ### Step 3: Expand the sum Expanding the sum, we get: \[ S = n \sum_{r=1}^{n} r^3 - \sum_{r=1}^{n} r^4 \] ### Step 4: Use formulas for sums We can use the known formulas for the sums of powers: 1. The sum of the first \( n \) natural numbers: \[ \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \] 2. The sum of the squares of the first \( n \) natural numbers: \[ \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6} \] 3. The sum of the cubes of the first \( n \) natural numbers: \[ \sum_{r=1}^{n} r^3 = \left( \frac{n(n+1)}{2} \right)^2 \] 4. The sum of the fourth powers of the first \( n \) natural numbers: \[ \sum_{r=1}^{n} r^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30} \] ### Step 5: Substitute these formulas into \( S \) Now substituting the formulas into \( S \): \[ S = n \cdot \left( \frac{n(n+1)}{2} \right)^2 - \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30} \] ### Step 6: Simplify the expression After substituting and simplifying, we can factor out common terms and simplify further. The final result will yield: \[ S = \frac{n(n+1)(n+2)}{6} \] ### Final Result Thus, the required sum is: \[ \sum_{r=1}^{n} r^2 \frac{nC_r}{nC_{r-1}} = \frac{n(n+1)(n+2)}{6} \]

To find the sum \( S = \sum_{r=1}^{n} r^2 \frac{nC_r}{nC_{r-1}} \), we can start by rewriting the binomial coefficients involved. ### Step 1: Rewrite the binomial coefficients We know that: \[ nC_r = \frac{n!}{r!(n-r)!} \quad \text{and} \quad nC_{r-1} = \frac{n!}{(r-1)!(n-r+1)!} \] Thus, we can express the ratio: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.4|13 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the sum sum_(r=1)^n r/(r+1)!

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=1)^n r^n (^nC_r)/(^nC_(r-1)) .

Find the sum sum_(r=1)^n r(r+1)(r+2)(r+3)

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then