Home
Class 12
MATHS
Find the sum of the series .^(84)C(4)+6x...

Find the sum of the series `.^(84)C_(4)+6xx.^(84)C_(5)+15xx.^(84)C_(6)+20xx.^(84)C_(7)+15xx.^(84)C_(8)``+6xx.^(84)C_(9)+.^(84)C_(10)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \( \binom{84}{4} + 6 \cdot \binom{84}{5} + 15 \cdot \binom{84}{6} + 20 \cdot \binom{84}{7} + 15 \cdot \binom{84}{8} + 6 \cdot \binom{84}{9} + \binom{84}{10} \), we can use the Binomial Theorem and properties of binomial coefficients. ### Step-by-Step Solution: 1. **Rewrite the Series**: We can express the coefficients in terms of binomial coefficients: \[ \binom{84}{4} + 6 \cdot \binom{84}{5} + 15 \cdot \binom{84}{6} + 20 \cdot \binom{84}{7} + 15 \cdot \binom{84}{8} + 6 \cdot \binom{84}{9} + \binom{84}{10} \] can be rewritten as: \[ \binom{6}{6} \cdot \binom{84}{4} + \binom{6}{5} \cdot \binom{84}{5} + \binom{6}{4} \cdot \binom{84}{6} + \binom{6}{3} \cdot \binom{84}{7} + \binom{6}{2} \cdot \binom{84}{8} + \binom{6}{1} \cdot \binom{84}{9} + \binom{6}{0} \cdot \binom{84}{10} \] 2. **Identify the Generating Function**: The sum can be interpreted as the coefficient of \( x^{10} \) in the expansion of: \[ (1 + x^6)(1 + x^{84}) \] This is because each term corresponds to choosing a certain number of \( x^6 \) from the first factor and \( x^{84} \) from the second factor. 3. **Expand the Generating Function**: The generating function can be simplified: \[ (1 + x^6)(1 + x^{84}) = 1 + x^6 + x^{84} + x^{90} \] 4. **Find the Coefficient of \( x^{10} \)**: We need to find the coefficient of \( x^{10} \) in this expression. Since the highest power is \( x^{90} \), and \( x^{10} \) is less than \( x^6 \), the only relevant term is \( 1 \). Thus, the coefficient of \( x^{10} \) in \( 1 + x^6 + x^{84} + x^{90} \) is \( 0 \). 5. **Use the Binomial Coefficient**: We can also express the sum as: \[ \binom{90}{10} \] This is derived from the fact that the coefficient of \( x^{10} \) in \( (1 + x)^{90} \) is \( \binom{90}{10} \). ### Final Result: Thus, the sum of the series is: \[ \boxed{\binom{90}{10}} \]

To find the sum of the series \( \binom{84}{4} + 6 \cdot \binom{84}{5} + 15 \cdot \binom{84}{6} + 20 \cdot \binom{84}{7} + 15 \cdot \binom{84}{8} + 6 \cdot \binom{84}{9} + \binom{84}{10} \), we can use the Binomial Theorem and properties of binomial coefficients. ### Step-by-Step Solution: 1. **Rewrite the Series**: We can express the coefficients in terms of binomial coefficients: \[ \binom{84}{4} + 6 \cdot \binom{84}{5} + 15 \cdot \binom{84}{6} + 20 \cdot \binom{84}{7} + 15 \cdot \binom{84}{8} + 6 \cdot \binom{84}{9} + \binom{84}{10} ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.6|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

Find the sum 1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "….." + n xx (n+1) xx .^(n)C_(n) .

The sum 2 xx ""^(40)C_(2) + 6 xx ""^(40)C_(3) + 12 xx ""^(40)C_(4) + 20 xx ""^(40)C_(5) + "…." + 1560 xx ""^(40)C_(40) is divisible by

""^(15)C_(9)-_""^(15)C_(6)+""^(15)C_(7)-^(15)C_(8) equals to

Simplify and write the answer in exponential form. a. (4^(3)xx10^(5))/(2^(3)xx5^(4)) b. ((6^(4))^(4)xx5^(8)xxa^(6))/(9^(9)xx10^(6)) c. (15^(32)xx12^(15)xx54^(4))/(25^(12)xx18^(8)xx9^(2)) d. (8^(4)xx6^(4))/(2^(8)xx3^(3)) e. (8^(12)xx(9^(2))^(5)xx5^(6))/(6^(9)xx15^(4)) f. (21^(16)xx70^(8)xx36^(15))/(49^(4)xx15^(5)xx24^(6))

""^(15)C_(8) + ""^(15)C_(9) - ""^(15)C_(6) - ""^(15)C_(7) is equal to ………. .

Find the area of a circle whose diameter is (a)8.4 cm (b) 5.6 m (c)7 km

Find the circumference of a circle whose area is 301. 84\ c m^2 .