Home
Class 12
MATHS
Prove that C0-2^2C1+3^2C2-4^2C3++(-1)^n(...

Prove that `C_0-2^2C_1+3^2C_2-4^2C_3++(-1)^n(n+1)^2xxC_n=0w h e r eC_r=^n C_r` .

Text Solution

Verified by Experts

`S=C_(0)-2^(2)C_(1)+3^(2)C_(2)-"....."+(-1)^(n)(n+1)^(2)C_(n)`
`T_(r) = (-1)^(r)r^(2).^(n)C_(r)`
`= (-1)^(r)r(r^(n)C_(r))`
`= (-1)^(r)r(n^(n-1)C_(r-1))`
`=n(-1)^(r)((r-1)+1)(.^(n-1)C_(r-1))`
`=n(-1)^(r)((r-1).^(n-1)C_(r-1)+.^(n-1)C_(r-1))`
`= n(-1)^(r)((n-1)^(n-2)C_(r-2)+.^(n-1)C_(r-1))`
`= n(n-1).^(n-2)C_(r-2)(-1)^(r-2)-n^(n-1)C_(r-1)(-1)^(r-1)`
`rArr S = underset(r=0)overset(n)sumT_(r)`
`= n(n-1)(1-1)^(n-2)-n(1-1)^(n-1)`
`=0`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.6|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If n >2, then prove that C_1(a-1)-C_2xx(a-2)++(-1)^(n-1)C_n(a-n)=a ,w h e r eC_r=^n C_rdot

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

Prove that C_0 + 2.C_1 + 4.C_2 + 8.C_3 + ……+2^n.C_n = 3^n

Find the sum 1C_0+2C_1+3C_2++(n+1)C_n ,w h e r eC_r=^n C_rdot

Show that C_1^2-2C_2^2+3.C_3^2- ……….-2n.C_(2n)^2=(-1)^(n-1).n.C_n where C_r stands for ''^(2n)C_r''

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that (n-1)^(2) C_(1) + (n-3)^(2) C_(3) + (n-5)^(2) C_(5) . + ….= n (n+1)2^(n-3) , where C_(r) stands for ""^(n)C_(r) .

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .