Home
Class 12
MATHS
Find the value of underset(0leiltjlen)(...

Find the value of `underset(0leiltjlen)(sumsum)(1+j)(.^(n)C_(i)+.^(n)C_(j))`.

Text Solution

Verified by Experts

The correct Answer is:
`n^(2)((2^(2(n-1))-.^(2(n-1))C_(n-1))/(2))`

`S=underset(lleiltjlen-1)(sumsum)(i.^(n)C_(i))(j.^(n)C_(j))`
`=n^(2)underset(lleiltjlen-1)(sumsum).^(n-1)C_(i-1).^(n-1)C_(j-1)`
`= n^(2)((2^(2(n-1))-.^(2(n-1))C_(n-1))/(2))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.6|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following underset(0leile jlen)(sumsum)C_(i)C_(j)

Find the value of (sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j)) .

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

The value of (sumsum)_(0leilejlen) (""^(n)C_(i) + ""^(n)C_(j)) is equal to

For any n in N, let C_(r) stand for ""^(n)C_(r) , r = 0,1,2,3,…,n and let S= sum_(r=0)^(n) (1)/(C_(r)) Statement-1: underset(0leilt i le n)(sumsum) ((i)/(C_(i))+(j)/(C_(j)))= (n^(2))/(2)S Statement-2: underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= nS

Find the value of underset((inejnek))(sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo))1/(3^(i)3^(j)3^(k)) .

Find the value of sumsum_(0leilejlt=n)(i+j)(nC_i+n C_j)dot

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to