Home
Class 12
MATHS
Prove that ^n C0 .^n C0-^(n+1)C1 . ^n C1...

Prove that `^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot`

Text Solution

Verified by Experts

`.^(n)C_(0).^(n)C_(0)-.^(n)C_(1).^(n+1)C_(1)+.^(n)C_(2).^(n+2)C_(2)-"....."`
`= .^(n)C_(0).^(n)C_(n)-.^(n)C_(1).^(n+1)C_(n)+.^(n)C_(2).^(n+2)C_(n)-"...."`
= Coefficient of `x^(n)` in `[.^(n)C_(0)(1+x)^(n)-.^(n)C_(1)(1+x)^(n+1)+.^(n)C_(2)(1+x)^(n+2)+"....."+(-1)^(n).^(n)C_(n)(1+x)^(2n)]`
= Coefficient of `x^(2)` in `(1+x)^(n)[.^(n)C_(0) - .^(n)C_(1)(1+x)+.^(n)C_(2)(1+x)^(2)-"......"+(-1)^(n).^(n)C_(n)(1+x)^(n)]`
= Coefficient of `x^(n)` in `(1+x)^(n)[1-(1+x)]^(n)`
= Coefficient of `x^(n)` in `(1+x)^(n) (-x)^(n)`
`= (-1)^(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.6|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that ^n C_0+^n C_3+^n C_6+=1/3(2^n+2cos((npi)/3)) .

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

If n and k are positive integers, show that 2^k( .^n C_0)(.^n C_k)-2^(k-1)(.^n C_1)(.^(n-1) C_k-1)+2^(k-2)(.^n C_2)((n-2k-2))_dot-...+ (-1)^k(^n C_k)+(.^(n-k) C_0)=(.^n C_k)w h e r e(.^n C_k) stands for .^n C_k.

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2m+1) 2^(n) .

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Prove that (^n C_0)/x-(^n C_0)/(x+1)+(^n C_1)/(x+2)-+(-1)^n(^n C_n)/(x+n)=(n !)/(x(x+1)(x-n)), where n is any positive integer and x is not a negative integer.