Home
Class 12
MATHS
Prove that .^n C0 . ^(2n) Cn- ^n C1 . ...

Prove that ` .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot`

Text Solution

Verified by Experts

L.H.S. `= .^(n)C_(0).^(2n)C_(n)-.^(n)C_(1).^(2n-2)C_(n)+.^(n)C_(2).^(2n-4)C_(n)-"…."`
= Coefficient of `x^(n)` in `[.^(n)C_(0)(1+x)^(2n)- .^(n)C_(1)(1+x)^(2n-2)+.^(n)C_(2)(1+x)^(2n-4)-"….."]`
=Coefficient of `x^(n)` in `[(1+x)^(2) - 1]^(n)`
= Coefficient of `x^(n)` in `(2x+x^(2))^(n)`
= Coefficient of `x^(n)` in `x^(n)(2+x)^(n)`
`= 2^(n)`
= R.H.S.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.6|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot

Prove that: \ ^(2n)C_n=(2^n[1. 3. 5 (2n-1)])/(n !)

Prove that C_0 + 2.C_1 + 4.C_2 + 8.C_3 + ……+2^n.C_n = 3^n

Prove that ^n C_0+^n C_3+^n C_6+=1/3(2^n+2cos((npi)/3)) .

Prove that: ^(2n)C_0-3.^(2n)C_1+3^2.^(2n)C_2-..+(-1)^(2n) ..3^(2n)^(2n)C_(2n)=4^n for all value of N

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2m+1) 2^(n) .

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .