Home
Class 12
MATHS
If f(x)=[2x]sin3pix then prove that f'(k...

If `f(x)=[2x]sin3pix` then prove that `f'(k^(+))=6kpi(-1)^(k)`, (where [.] denotes the greatest integer function and `k in N).`

Text Solution

AI Generated Solution

To prove that \( f'(k^{+}) = 6k\pi (-1)^{k} \) for the function \( f(x) = [2x] \sin(3\pi x) \), where \([.]\) denotes the greatest integer function and \( k \in \mathbb{N} \), we will follow these steps: ### Step 1: Define the derivative at \( k^{+} \) The derivative \( f'(k^{+}) \) can be defined using the limit: \[ f'(k^{+}) = \lim_{h \to 0^{+}} \frac{f(k+h) - f(k)}{h} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

f(x)=[2x]sin3pixa n df^(prime)(k^(prime))=lambdakpi(-1)^k (where [.] denotes the greatest integer function and k in N), then find the value of lambda .

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is