Home
Class 12
MATHS
Find (dy)/(dx) for y=sin^(-1)(cosx), whe...

Find `(dy)/(dx)` for `y=sin^(-1)(cosx),` where `x in (0,2pi)dot`

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}(\cos x)\), we will follow these steps: ### Step 1: Differentiate using the chain rule We start with the function: \[ y = \sin^{-1}(\cos x) \] To differentiate \(y\) with respect to \(x\), we apply the chain rule. The derivative of \(\sin^{-1}(u)\) with respect to \(u\) is: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for y=sin(x^2+1)dot

Find (dy)/(dx) for y=sin(x^2+1)dot

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Find dy/dx if y= x.cosx

Find dy/dx if y= cosx/x

Find dy/dx if y= x/cosx

Find dy/dx if y= cosx/x

Find dy/dx if x-4y=cosx

(dy)/(dx) for y=tan^(-1){sqrt((1+cosx)/(1-cosx))} ,where 0 lt x lt pi , is