Home
Class 12
MATHS
y=sin^(-1)(x/sqrt(1+x^2))+cos^(-1)(1/sqr...

`y=sin^(-1)(x/sqrt(1+x^2))+cos^(-1)(1/sqrt(1+x^2)),` where `0 < x < oo` Find `dy/dx`

Text Solution

AI Generated Solution

To find the derivative \( \frac{dy}{dx} \) for the given function \[ y = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right) + \cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right), \] we can simplify the expression and then differentiate it. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

y=sin^(-1)(x/sqrt(1+x^2))+cos^(-1)(1/sqrt(1+x^2)), Find dy/dx

If y= sin^(-1)(x/(sqrt(1+x^2))) + cos^(-1)(1/(sqrt(1+x^2))) , prove that (dy)/(dx)=(2x)/(1+x^2) .

y = sin^(-1)(1/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2)) . find dy/dx .

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sqrt(1+x^2)) -cos^(-1)1/(sqrt(1+x^2)) (d) -cos e c^(-1)(sqrt(1+x^2))/x

If -1< x < 0 , then cos^(-1)x is equal to (a) sec^(-1)(1/ x) (b) pi-sin^(-1)sqrt(1+x^2) (c) pi+tan^(-1)(x/(sqrt(1-x^2))) (d) cot^(-1)(x/(sqrt(1-x^2))) .

If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x))) where x in (0, 1/2) , then f'(x) has the value equal to (i) 2/(xsqrt(1-x)) (ii) 0 (iii) -2/(xsqrt(1-x)) (iv) pi

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(-1) (sqrt(1 - x^2)/x) - sin^(-1) x , is