Home
Class 12
MATHS
If cosy=xcos(a+y), with cosa!=+-1, prove...

If `cosy=xcos(a+y),` with `cosa!=+-1,` prove that `(dy)/(dx)=(cos^2(a+y))/(sina)dot`

Text Solution

Verified by Experts

Given relation is cos y = x cos (a+y). Therefore,
`x=(cos y)/(cos (a+y))`
Differentaiting w.r.t.y, we get
`(dx)/(dy)=(d)/(dy)((cos y)/(cos (a+y)))`
`=((cos (a+y)(-sin y)- cos y (-sin (a+y)))/(cos^(2)(a+y)))`
`=((-cos (a+y) sin y + cos y sin (a+y))/(cos^(2) (a+y)))`
`=((sin (a+y-y))/(cos^(2)(a+y)))=(sin a)/(cos^(2)(a+y))`
`therefore" "(dy)/(dx)=(cos^(2)(a+y))/(sin a)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If cosy=xcos(a+y) , where cosa!=-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If xsin(a+y)+sinacos(a+y)=0 , prove that (dy)/(dx)=(s in^2(a+y))/(sina)

If xsin(a+y)+sina cos(a+y)=0 , prove that (dy)/(dx)=sin^2(a+y)/sina

If siny=xsin(a+y), prove that (dy)/(dx)= (sin^2(a+y))/(sina) .

If xsin(a+y)+sina.cos(a+y)=0. Prove that : (dy)/(dx)=(sin^2(a+y)/(sina))

If x y=1 , prove that (dy)/(dx)+y^2=0 .

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)

If siny=xsin(a+y),\ \ prove that (dy)/(dx)=(sin ^2\ (a+y))/(sina)

If y=xsin(a+y) , prove that (dy)/(dx)=(s in^2(a+y))/(sin(a+y)-y cos\ (a+y))