Home
Class 12
MATHS
If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+\ dot...

If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+\ dotto\ oo)))` , prove that `(dy)/(dx)=(cosx)/(2y-1)`

Text Solution

AI Generated Solution

To solve the problem, we start with the given equation: \[ y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \cdots}}} \] ### Step 1: Rewrite the equation Notice that the expression inside the square root is the same as \( y \). Therefore, we can rewrite the equation as: \[ y = \sqrt{\sin x + y} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ tooo))) ,prove that (dy)/(dx)=(cosx)/(2y-1)

If y=sqrt(tanx+sqrt(tanx+sqrt(tanx+\ dotto\ oo))) , prove that (dy)/(dx)=(s e c^2x)/(2y-1)

If y=sqrt(cosx+sqrt(cosx+sqrt(cosx+\ dotto\ oo))) , prove that (dy)/(dx)=(sinx)/(1-2y) .

If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ tooo))),p rov et h a t(dy)/(dx)=(cosx)/(2y-1)

If y=sqrt(x+sqrt(x+sqrt(x+\ dotto\ oo))) , prove that (dy)/(dx)=1/(2\ y-1)

If y=sqrt(cosx+sqrt(cosx+sqrt(cosx+...tooo))), prove that (dy)/(dx)=(sinx)/(1-2y)

If y=sqrt(logx+sqrt(logx+sqrt(logx+\ dotto\ oo))) , prove that (2y-1)(dy)/(dx)=1/x .

If y=sinx^(sinx^(sinx^dotoo)) , prove that (dy)/(dx)=(y^2cotx)/((1-ylogsinx))

If y=(sinx)/(1+(cosx)/(1+(sinx)/(1+(cosx)/(1+\ ddotto\ oo)))) , prove that (dy)/(dx)=((1+y)cosx+ysinx)/(1+2y+cosx-sinx)

int(sinx)/(sqrt(1+sinx))dx