Home
Class 12
MATHS
If x= e^(cos2t) and y = e^(sin2t), the...

If `x= e^(cos2t)` and `y = e^(sin2t)`, then move that `(dy)/(dx) = -(ylogx)/(xlogy)`.

Text Solution

Verified by Experts

`x=e^(cos2t)and y=e^(sin 2t)`
` cos 2t= log x and sin 2t = log y`
`therefore" "cos^(2) 2t +sin^(2) 2t = (log x)^(2) + (log y)^(2)`
`rArr" "(log x)^(2)+(log y)^(2)=1`
Differentiating both sides w.r.t. x, we get
`2log x(1)/(x)+2 log y (1)/(y)(dy)/(dx)=0`
`rArr" "(dy)/(dx)=(-y log x)/(x log y)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x= e^(cos2t) and y = e^(sin2t) , then prove that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x=a e^t(sint+cost) and y=a e^t(sint-cost), prove that (dy)/(dx)=(x+y)/(x-y)dot

If x=a(cos2t+2tsin2t) and y=a(sin2t-2tcos2t) , then find (dy)/(dx) .

If x^y. y^x=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

If x = a sin2t(1+cos2t) and y =b cos 2t(1-cos2t) , then show that ((dy)/(dx))_(t=pi//4) = (b)/(a) .

If x=a (cos t +log (tan ((t)/(2)) )) ,y =a sin t ,then (dy)/(dx) =

If x = sin t , y = sin 2t , prove that (1-x^2)((dy)/(dx))^2=4(1-y^2)

If x^ydoty^x=1,p rov et h a t(dy)/(dx)=-(y(y+xlogy)/(x(ylogx+x)

If x=a(cos t+t sin t) and y=a(sin t - t cos t), then (d^2y)/dx^2