Home
Class 12
MATHS
If f(x)=|x|^(|sinx|), then find f^(prime...

If `f(x)=|x|^(|sinx|),` then find `f^(prime)(-pi/4)`

Text Solution

AI Generated Solution

To find \( f'(-\frac{\pi}{4}) \) for the function \( f(x) = |x|^{|\sin x|} \), we will follow these steps: ### Step 1: Determine the expression for \( f(x) \) around \( x = -\frac{\pi}{4} \) Since \( x = -\frac{\pi}{4} \) is negative, we can express \( |x| \) as \( -x \). Also, we need to evaluate \( |\sin x| \) at \( x = -\frac{\pi}{4} \): \[ \sin\left(-\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} \quad \Rightarrow \quad |\sin\left(-\frac{\pi}{4}\right)| = \frac{1}{\sqrt{2}} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x|^(|sinx|) ,then f'((pi)/(4)) equals

If f(x)=|cosx-sinx| , find f^(prime)(pi/6) and f^(prime)(pi/3) .

If f(x)=|cosx-sinx| ,find f^(prime)(pi/6) and f^(prime)(pi/3)dot

If f(x)=|cosx| , find f^(prime)(pi/4) and f^(prime)((3pi)/4) .

If is a real valued function defined by f(x)=x^2+4x+3, then find f^(prime)(1)a n df^(prime)(3)dot

If f(x)=x+sinx , then find (2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx .

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

If f(x)=cosxdotcos2xdotcos4xdotcos8xdotcos16 x , then find f^(prime)(pi/4)dot

If f(x)=2sinx-x^(2) , then in x in [0, pi]