Home
Class 12
MATHS
"If "f(x)=lim(hrarr0) ((sin(x+h))^(log(e...

`"If "f(x)=lim_(hrarr0) ((sin(x+h))^(log_(e)(x+h))-(sin x)^(log_(e)x))/(h)" then find "f(pi//2).`

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of the function \( f(x) \) defined by the limit: \[ f(x) = \lim_{h \to 0} \frac{(\sin(x+h))^{\log_e(x+h)} - (\sin x)^{\log_e x}}{h} \] We are specifically interested in finding \( f\left(\frac{\pi}{2}\right) \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

lim_(hrarr0) ((e+h)^(In(e+h))-e)/(h) is-

lim_(xrarroo) x^(2)sin(log_(e)sqrt(cos(pi)/(x)))

If f(x)=log_(x) (log x)," then find "f'(x) at x= e

If f(x)=|log_(e) x|,then

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

Evaluate lim_(hto0) (log_(e)(1+2h)-2log_(e)(1+h))/(h^(2)).

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x).

lim_(xrarroo) [x-log_(e)((e^(x)+e^(-x))/(2))]=