Home
Class 12
MATHS
Differentiate tan^(-1)((sqrt(1+x^2)-1)...

Differentiate `tan^(-1)((sqrt(1+x^2)-1)/x)` with respect to `sin^(-1)((2x)/(1+x^2)),`

Text Solution

Verified by Experts

`"Let "tan^(-1)((sqrt(1+x^(2)-1))/(x))and v = tan^(-1)x.`
Putting `x=tan theta,` we get
`u=tan^(-1)((sqrt(1+x^(2)-1))/(x))`
`=tan^(-1)((sec theta-1)/(tan theta))`
`=tan^(-1)((1-cos theta)/(sin theta))`
`=tan^(-1)(tan""(theta)/(2))`
`=(1)/(2)theta`
`=(1)/(2)tan^(-1)x`
Thus, we have `u=(1)/(2)tan^(-1)x" and "v=tan^(-1)x`. Therefore,
`(du)/(dx)=(1)/(2)xx(1)/(1+x^(2))and (dv)/(dx)=(1)/(1+x^(2))`
`therefore" "(du)/(dv)=(du//dx)/(dv//dx)=(1)/(2(1+x^(2)))(1+x^(2))=(1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)[(sqrt(1+x^2)-1)/x] with respect to x

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

If x in (1/(sqrt(2)),\ 1) , differentiate tan^(-1)((sqrt(1-x^2))/x) with respect to cos^(-1)(2xsqrt(1-x^2)) .

Differentiate tan^(-1)(x/(sqrt(1-x^2))) with respect to sin^(-1)(2xsqrt(1-x^2)), if -1/(sqrt(2)) < x< 1 /(sqrt(2))

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x , when x!=0.

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to sin^(-1)((2x)/(1+x^2)) , if x in (-1,\ 1)

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to sin^(-1)((2x)/(1+x^2)) , if x in (-1,\ 1)

Differentiate tan^-1((4sqrt(x))/(1-4x))