Home
Class 12
MATHS
" Let " =|{:(cos x,,sin x,,cosx),( cos...

`" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}|` then find the values of f(0) and f'`(pi//2)`.

Text Solution

Verified by Experts

`f'(x)|{:(-sin x, sin x, cos x ),(-2 sin 2x, sin 2x, 2cos 2x),(-3 sin 3x, sin 3x, 3cos 3x):}|`
`+|{:(cos x, cos x, cos x),(cos 2x, 2cos 2x, 2cos 2x),(cos 3x, 3 cos 3x, 3cos 3x):}|`
`+|{:(cos x, sin x, -sin x),(cos 2x, sin 2x, -4 sin 2x),(cos 3x, sin 3x, -9sin 3x):}|`
`=|{:(-sin x, sin x, cos x),(-2 sin 2x, sin 2x, 2 cos 2x),(-3 sin 3x, sin 3x, 3cos 3 x):}|`
`+|{:(cos x, sin x, -sin x),(cos 2 x, sin 2 x, -4 sin 2x),(cos 3x, sin 3x, -9 sin 3x):}|`
`therefore" "f'(0)=|{:(0,0,1),(0,0,2),(0,0,3):}|+|{:(1,0,0),(1,0,0),(1,0,0):}|=0+0=0`
`f'(pi//2)=|{:(-1,1,0),(0,0,-2),(3,-1,0):}|+|{:(0,1,-1),(-1,0,0),(0,-1,9):}|`
`=(-6+2)+(-1+9)=4`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

If f(x) = |{:( cos (2x) ,, cos ( 2x ) ,, sin ( 2x) ), ( - cos x,, cosx ,, - sin x ), ( sinx,, sin x,, cos x ):}| , then

Let f(x)=|[cos(x+x^2),sin(x+x^2),-cos(x+x^2)],[sin(x-x^2),cos(x-x^2), sin(x-x^2)],[sin2x,0,sin(2x^2)]| . Find the value of f^(prime)(0) .

( cos 4x + cos 3x + cos 2x )/( sin 4x + sin 3x + sin 2x) = cot3x

Solve |cos x - 2 sin 2x - cos 3 x|=1-2 sin x - cos 2x .

"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|. Find the value of f'(0).

"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|. Find the value of f'(0).

Solve sin x-3 sin 2x + sin 3x = cos x -3 cos 2x + cos 3x .

Prove that : (cos 4x sin 3x - cos 2x sin x)/(sin 4x .sin x + cos 6x .cos x) = tan 2x