Home
Class 12
MATHS
If y=cos^(-1)x , find (d^2y)/(dx^2) in t...

If `y=cos^(-1)x` , find `(d^2y)/(dx^2)` in terms of `y` alone.

Text Solution

Verified by Experts

`y=cos^(-1)x,`
`"or "x=cos y`
Differentiating w.r.t. y, we get
`(dx)/(dy)=-sin y`
`"or "(dy)/(dx)=-cosec y`
Differentiating w.r.t. x, we get
`(d^(2)y)/(dx^(2))=(d)/(dx)(-cosec y)`
`=(d)/(dy)=(-"cosec "y)(dy)/(dx)`
`="cosec y cot y (-cosec y)"`
`-cot ycdot cosec^(2) y`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

"If "y=cos^(-1)x, "find "(d^(2)y)/(dx^(2)) in terms of y alone.

If y=tan^(-1)x , find (d^2y)/(dx^2) in terms of y alone.

If y=tan^(-1)x , find (d^2y)/(dx^2) in terms of y alone.

If y=tan^-1x find (d^2y)/(dx^2) in terms of y alone.

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

If y=x^x , find (d^2y)/(dx^2) .

If y=cos^2x , then find (dy)/(dx) .

If y=(x-x^2) , then find (d^2y)/(dx^2) .

If y=log x , find (d^2y)/(dx^2) .

If y=tan^(-1)x^3 then find (d^2y)/(dx^(2)) .