Home
Class 12
MATHS
If f(x),g(x)a n dh(x) are three polyno...

If `f(x),g(x)a n dh(x)` are three polynomial of degree 2, then prove that `"phi(x)=|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x)):}|` is a constant polynomial.

Text Solution

Verified by Experts

`"Let "f(x)=a_(1)x^(2)+a_(2)x+a_(3),g(x)=b_(1)x^(2)+b_(2)x+b_(3), and h(x)=c_(1)x^(2)+c_(2)x+c_(3)." Then,"`
`f'(x)=2a_(1)x+a_(2),g'(x)=2b_(1)x+b_(2),h'(x)=2c_(1)x+c_(2)`
`f'(x)=2a_(1),g''(x)=2b_(1),h''(x)=2c_(1),`
`"and "f'''(x)=g'''(x)=h'''(x)=0`
In order to prove that `phi(x)` is a constant polynomial, it is sufficient to show that `phi'(x)=0` for all values of x, where
`phi(x)=|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x)):}|`
`therefore" "phi'(x)=|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x)):}|`
`+|{:(f(x),g(x),h(x)),(f''(x),g''(x),h''(x)),(f''(x),g''(x),h''(x)):}|`
`+|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f'''(x),g'''(x),h'''(x)):}|`
`=+0+|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(0,0,0):}|`
= 0 + 0 + 0 = 0 for all values of x
`therefore" "phi(x)=` constant for all
Hence, `phi(x)` is a constant polynomial.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x),g(x)a n dh(x) are three polynomial of degree 2, then prove that phi(x)=|f(x)g(x)h(x)f'(x)g'(x h '(x)f' '(x)g' '(x )h ' '(x)| is:

If f(x) g(x) and h(x) are three polynomials of degree 2 and Delta = |( f(x), g(x), h(x)), (f'(x), g'(x), h'(x)), (f''(x), g''(x), h''(x))| then Delta(x) is a polynomial of degree (dashes denote the differentiation).

If f(x),g(x)a n dh(x) are three polynomials of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l

If f(x),g(x)a n dh(x) are three polynomials of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l

If f(x), g(x), h(x) are polynomials of three degree, then phi(x)=|(f'(x),g'(x),h'(x)), (f''(x),g''(x),h''(x)), (f'''(x),g'''(x),h'''(x))| is a polynomial of degree (where f^n (x) represents nth derivative of f(x))

If f(x),g(x) and h(x) are three polynomials of degree 2, then prove that phi(x) = |[f(x),g(x),h(x)],[f ^ (prime)(x),g^(prime)(x),h^(prime)(x)],[f^(primeprime)(x),g^(primeprime)(x),h^(primeprime)(x)]| is a constant polynomial.

If g is inverse of f then prove that f''(g(x))=-g''(x)(f'(g(x)))^(3).

If g is inverse of f then prove that f''(g(x))=-g''(x)(f'(g(x)))^(3).

If f(x) and g(x) are polynomial functions of x, then domain of (f(x))/(g(x)) is

If (x-1) is a factor of polynomial f(x) but not of g(x) , then it must be a factor of (a) f(x)g(x) (b) -f\ (x)+\ g(x) (c) f(x)-g(x) (d) {f(x)+g(x)}g(x)