Home
Class 12
MATHS
"If "f(x)+f(y)=f((x+y)/(1-xy))" for all ...

`"If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and lim_(xrarr0)(f(x))/(x)=2" then find "f((1)/(sqrt(3))) and f'(1).`

Text Solution

AI Generated Solution

To solve the problem, we need to find the function \( f(x) \) that satisfies the given functional equation and limit condition. Let's go through the steps systematically. ### Step 1: Analyze the Functional Equation We are given the functional equation: \[ f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right) \] for all \( x, y \in \mathbb{R} \) where \( xy \neq 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

f(x)+f(y)=f((x+y)/(1-xy)) ,for all x,yinR . (xy!=1) ,and lim_(x->0) f(x)/x=2 .Find f(1/sqrt3) and f'(1) .

If f (x+y) =f (x) f(y) for all x,y and f (0) ne 0, and F (x) =(f(x))/(1+(f (x))^(2)) then:

If f(x+y)=f(x) xx f(y) for all x,y in R and f(5)=2, f'(0)=3, then f'(5)=

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is

If f((x+y)/3)=(2+f(x)+f(y))/3 for all x,y f'(2)=2 then find f(x)

Let be a real function satisfying f(x)+f(y)=f((x+y)/(1-xy)) for all x ,y in R and xy ne1 . Then f(x) is

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then sum_(r=1)^(n) f(r) , is

If 2f(x)=f(x y)+f(x/y) for all positive values of x and y,f(1)=0 and f'(1)=1, then f(e) is.

Let f:R to R such that f(x+y)+f(x-y)=2f(x)f(y) for all x,y in R . Then,